Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

## Supporting Information

for submission to New J Chem

## Observation of cascade $f \rightarrow d \rightarrow f$ energy transfer in sensitizing near-infrared (NIR) lanthanide complexes containing Ru(II) polypyridine metalloligand

Lu-Yin Zhang<sup>a</sup>, Kang Li<sup>a</sup>, Mei Pan<sup>a,b\*</sup>, Ya-Nan Fan<sup>a</sup>, Hai-Ping Wang<sup>a</sup>, and Cheng-Yong Su<sup>a,c\*</sup>

<sup>a</sup> MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

panm@mail.sysu.edu.cn; cesscy@mail.sysu.edu.cn

<sup>b</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

<sup>c</sup> State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China



Fig. S1 PXRD patterns for the grounded crystalline sample of Tb-Ru complex compared with the simulated pattern based on the single-crystal data.



Fig. S2 PXRD patterns for the freshly precipitated samples of Ru-Ln isomorphous series.



Fig. S3 PXRD patterns for Ln1-Ru-Ln2 isomorphous crystals.



Fig. S4 Extended packing in the crystal lattice of complex Tb-Ru.



Fig. S5 Solid state UV-vis reflectance spectra for  $L_{Ru}$  and different Ln-Ru complexes.



Fig. S6 Solid state excitation-wavelength-dependent emission spectra of Tb-Ru crystals.



Fig. S7 Solid state phosphorescence of Gd-Ru complex at 77 K.















Fig. S8 Solid state excitation-wavelength-dependent emission spectra for trimetallic complexes.

| Table ST. Selecti | d bolid distalle | cs (A) and angles | () for complex | 10-ixu.   |           |
|-------------------|------------------|-------------------|----------------|-----------|-----------|
| Ru1-N1            | 2.041(12)        | Ru1-N5            | 2.043(9)       | Ru1-N2    | 2.044(11) |
| Ru1-N3            | 2.061(11)        | Ru1-N6            | 2.066(9)       | Ru1-N4    | 2.068(12) |
| Ru2-N7            | 2.045(13)        | Ru2-N10           | 2.049(12)      | Ru2-N11   | 2.053(10) |
| Ru2-N9            | 2.053(12)        | Ru2-N8            | 2.067(10)      | Ru2-N12   | 2.067(10) |
| Ru3-N15           | 2.044(12)        | Ru3-N14           | 2.049(11)      | Ru3-N18   | 2.050(10) |
| Ru3-N17           | 2.050(9)         | Ru3-N16           | 2.068(10)      | Ru3-N13   | 2.070(10) |
| Tb1-O6            | 2.365(7)         | Tb1-O3            | 2.367(7)       | Tb1-O3W   | 2.370(6)  |
| Tb1-O1W           | 2.375(6)         | Tb1-O10           | 2.384(6)       | Tb1-O2W   | 2.395(7)  |
| Tb1-O4            | 2.589(7)         | Tb1-O5            | 2.606(8)       | Tb1-O9    | 2.610(7)  |
| N1-Ru1-N5         | 97.2(4)          | N1-Ru1-N2         | 79.3(5)        | N5-Ru1-N2 | 175.4(5)  |
| N1-Ru1-N3         | 96.5(5)          | N5-Ru1-N3         | 92.6(4)        | N2-Ru1-N3 | 90.8(4)   |
| N1-Ru1-N6         | 93.4(4)          | N5-Ru1-N6         | 80.1(3)        | N2-Ru1-N6 | 97.0(4)   |
| N3-Ru1-N6         | 168.4(5)         | N1-Ru1-N4         | 173.3(4)       | N5-Ru1-N4 | 86.7(4)   |
| N2-Ru1-N4         | 97.1(5)          | N3-Ru1-N4         | 77.9(5)        | N6-Ru1-N4 | 92.6(4)   |

Table S1. Selected bond distances (Å) and angles (°) for complex Tb-Ru.

Symmetry code: 'x, y, z'; '-x, y, -z+1/2'; 'x+1/2, y+1/2, z'; '-x+1/2, y+1/2, -z+1/2'; '-x, -y, -z'; 'x, -y, z-1/2'; '-x+1/2, -y+1/2, -z'; 'x+1/2, -y+1/2, z-1/2'

| λex /nm | QY/% |       |       |       |         |  |
|---------|------|-------|-------|-------|---------|--|
|         | LRu  | Eu-Ru | Tb-Ru | Gd-Ru | Tb-Ru-  |  |
|         |      |       |       |       | crystal |  |
| 335     | 5.1  | 12.7  | 11.7  | 11.0  | 21.8    |  |
| 370     | 5.8  | 14.7  | 13.2  | 13.0  | 22.1    |  |
| 410     | 5.4  | 13.6  | 12.4  | 12.6  | 21.6    |  |
| 450     | 4.8  | 12.8  | 11.9  | 11.2  | 21.1    |  |
| 490     | 5.4  | 13.0  | 12.1  | 11.9  | 21.6    |  |

Table S2. Solid state excitation-wavelength-dependent quantum yields (QY) of different samples.

Table S3. EA results for trimetallic complexes.

| Sample               | Formula                                                                            | Calculated |      | Measured |       |      |      |
|----------------------|------------------------------------------------------------------------------------|------------|------|----------|-------|------|------|
|                      |                                                                                    | C/%        | H/%  | N/%      | C/%   | H/%  | N/%  |
| Eu-Ru-Nd (Eu:Nd=1:3) | $[Eu_{0.25}Nd_{0.75}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_{11}$ | 41.80      | 3.43 | 9.39     | 41.82 | 3.00 | 9.17 |
| Eu-Ru-Nd (Eu:Nd=1:1) | $[Eu_{0.5}Nd_{0.5}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_{11}$   | 41.77      | 3.43 | 9.39     | 41.83 | 3.03 | 9.20 |
| Eu-Ru-Nd (Eu:Nd=3:1) | $[Eu_{0.75}Nd_{0.25}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$    | 42.57      | 3.27 | 9.57     | 42.41 | 3.02 | 9.41 |
| Tb-Ru-Nd (Tb:Nd=1:3) | $[Tb_{0.25}Nd_{0.75}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_{11}$ | 41.77      | 3.43 | 9.39     | 41.61 | 3.03 | 9.14 |
| Tb-Ru-Nd (Tb:Nd=1:1) | $[Tb_{0.5}Nd_{0.5}(L_{Ru})_3(H_2O)_3]\cdot(PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$        | 42.55      | 3.27 | 9.56     | 42.42 | 2.99 | 9.42 |
| Tb-Ru-Nd (Tb:Nd=3:1) | $[Tb_{0.75}Nd_{0.25}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$    | 42.49      | 3.27 | 9.55     | 42.31 | 3.00 | 9.31 |
| Eu-Ru-Yb (Eu:Yb=1:3) | $[Eu_{0.25}Yb_{0.75}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$    | 42.29      | 3.25 | 9.50     | 41.93 | 3.01 | 9.29 |
| Eu-Ru-Yb (Eu:Yb=1:1) | $[Eu_{0.5}Yb_{0.5}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$      | 42.38      | 3.26 | 9.52     | 42.18 | 2.94 | 9.33 |
| Eu-Ru-Yb (Eu:Yb=3:1) | $[Eu_{0.75}Yb_{0.25}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$    | 42.46      | 3.27 | 9.54     | 42.25 | 2.97 | 9.37 |
| Tb-Ru-Yb (Tb:Yb=1:3) | $[Tb_{0.25}Yb_{0.75}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_8$    | 42.27      | 3.25 | 9.50     | 41.92 | 2.98 | 9.27 |
| Tb-Ru-Yb (Tb:Yb=1:1) | $[Tb_{0.5}Yb_{0.5}(L_{Ru})_3(H_2O)_3] \cdot (PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_{10}$   | 41.77      | 3.36 | 9.39     | 41.40 | 2.99 | 9.22 |
| Tb-Ru-Yb (Tb:Yb=3:1) | $[Tb_{0.75}Yb_{0.25}(L_{Ru})_3(H_2O)_3]\cdot(PF_6)_{2.5}(NO_3)_{0.5}(H_2O)_9$      | 42.10      | 3.31 | 9.46     | 42.01 | 3.04 | 9.25 |