Supplementary Material

2,4 and 2,5-bis(benzooxazol-2'-yl)hydroquinone (DHBO) and their borate complexes: Synthesis and Optical properties

Karima Benelhadj,^a Julien Massue,^{*a} and Gilles Ulrich^{*a}

^a Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Chimie Organique pour les Matériaux, la Biologie et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.

Contact: massue@unistra.fr, gulrich@unistra.fr

- S1 General information and equipments p.2
- S2 Synthetic protocols p.3
- S3 ¹H and ¹³C NMR Spectra p.6
- S4 Spectroscopic data p.30
- S5 HRMS spectra p.32

S1 General information and equipements

All reactions were performed under a dry atmosphere of argon using standard Schlenck techniques. All chemicals were received from commercial sources (Aldrich, Alfa Aesar, Acros) and used without further purification. Dichloromethane were distilled over P_2O_5 under an argon atmosphere. Thin layer chromatography (TLC) was performed on silica gel coated with fluorescent indicator. Chromatographic purifications were conducted using 40-63 µm silica gel. All mixtures of solvents are given in v/v ratio.

¹H NMR (400.1 MHz) and ¹³C NMR (100.5 MHz) spectra were recorded on a Bruker Advance 400 MHz spectrometer, ¹H NMR (300.1 MHz) and ¹³C NMR (75.5 MHz) or a Bruker Advance 300 MHz spectrometer with perdeuterated solvents with residual protonated solvent signals as internal references.

Absorption spectra were recorded using a dual-beam grating Schimadzu UV-3000 absorption spectrometer with a 1 cm quartz cell. The steady-state fluorescence emission and excitation spectra were obtained by using a Horiba S2 Jobin Yvon Fluoromax 4. All fluorescence spectra were corrected. Solvents for spectroscopy were spectroscopic grade and were used as received. All fluorescence spectra were corrected.

The fluorescence quantum yield (Φ_{exp}) was calculated from eq (1).

$$\Phi_{exp} = \Phi_{ref} \frac{I}{I_{ref}} \frac{OD_{ref}}{OD} \frac{\eta^2}{\eta^2_{ref}} \quad (eq \ 1)$$

I denotes the integral of the corrected emission spectrum, OD is the optical density at the excitation wavelength, and η is the refractive index of the medium. The reference systems used were: Quinine Φ = 55% in H₂SO₄ 1N, λ_{exc} = 366 nm for dyes emitting below 480 nm, Rhodamine 6G, Φ = 88% in ethanol λ_{exc} = 488 nm for dyes emitting between 480 and 570 nm and cresyl violet, Φ = 55% λ_{exc} = 546 nm in ethanol for dyes emitting above 570 nm.

Luminescence lifetimes were measured on an Edimburgh Instruments spectrofluorimeter equipped with a R928photomultiplier and a PicoQuant PDL 800-D pulsed diode connected to a GwInstect GFG- 8015G delay generator. No filter was used for the excitation. Emission wavelengths were selected by a monochromator. Lifetimes were deconvoluted with FS-900 software using a light-scattering solution (LUDOX) for instrument response. The excitation source was a laser diode (λ 320 nm).

S2 Synthetic protocols

Compound 1

To a stirred solution of 1,3-dimethoxybenzene (1.5 g, 10.8 mmol), in CH_2Cl_2 (20 ml) was added dropwise a 1.0M solution of bromine in CH_2Cl_2 (2.30 mmol) at 0 °C under argon. The reaction was stirred for 30 min and progress was monitored by TLC. The product was then washed with saturated sodium thiosulfate and concentrated under vacuum to afford the brominated intermediate as a white solid

which was used without further purification. 1.6N butyl-lithium in hexane (4.0 ml, 5.60 mmol) was syringed at room temperature to a stirred solution of the brominated intermediate in anhydrous ether (30 ml) under argon. The solution was stirred for 1 min. before anhydrous DMF (6.70 mmol) was added dropwise. The formed precipitate was stirred for 5 min before 10 ml of HCl (10%) was added. The stirring was continued for a further 15 min after which the precipitate was washed with water and extracted with ether. After solvent evaporation, the crude residue was purified by recrystallization in ethanol leading to compound **1** as a crystalline white powder (66% over 2 steps).

¹H NMR (300 MHz, CDCl₃) δ (ppm) = 10.27 (s, 2H, CHO), 8.34 (s, 1H, H_a), 6.45 (s, 1H), 4.02 (s, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 187.7, 167.5, 132.1, 119.0, 94.4, 56.3. ESI-HRMS calcd for C₁₀H₁₁O₄: 195.0652 (M+H) found 195.0643 (M+H).

Compound 6

To a solution of *p*-dimethoxybenzene (1.40 g, 10 mmol) and N,N,N',N'tetramethylethylenediamine (7.5 ml, 50 mmol) in diethyl ether (40 ml) was added nbutyllithium (1.6M solution in hexane, 32 ml, 50 mmol) at 0 °C under argon. The mixture was then refluxed for 24h. After the mixture was cooled down to room temperature, N,N-dimethylformamide (5 ml, 55 mmol) was added to the mixture, which was stirred overnight at room temperature. After addition of water (25 ml), the

mixture was extracted with chloroform. The organic layer was dried over anhydrous $MgSO_4$, filtered, and concentrated under vacuum to give a brown oil which was further purified by recrystallization from dichloromethane/pentane to afford compound **6** (46%).

¹H NMR (300 MHz, CDCl₃) δ (ppm) = 10.50 (s, 2H, CHO), 7.46 (s, 2H), 3.94 (s, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 189.4, 155.9, 129.3, 111.1, 56.4.

General procedures for the synthesis of DHBO 2, 3 and 7

To a solution of 5-substituted-2-aminophenol in methanol was added 1 equiv. of the appropriate benzaldehyde **1** or **6**, 1 equiv. of phenylboronic acid and 3 equiv. of potassium cyanide. The mixture was stirred for 24 h at rt. After solvent evaporation, the crude residue was purified by silica gel chromatography eluting with CH_2Cl_2/Pet . Ether leading to the corresponding DHBO.

DHBO 2

85%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 8.97 (s, 1H), 7.87 (d, 2H, ${}^{4}J_{3-1}$ = 1.8 Hz), 7.51 (d, 2H, ${}^{3}J_{2-1}$ = 8.5 Hz), 7.40 (d, 2H, ${}^{3}J_{1-2}$ = 8.5 Hz, ${}^{4}J_{1-3}$ = 1.8 Hz), 6.72 (s, 1H), 4.13 (s, 6H, CH₃), 1.39 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 162.0, 160.8, 148.3,

147.9, 142.3, 134.1, 122.6, 116.8, 109.6, 109.6, 96.3, 56.6, 35.1, 31.9. ESI-MS calcd $C_{30}H_{33}N_2O_4$: 485.2435 (M+H), found 485.2380 (M+H).

DHBO 3

94%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 9.02 (s, 1H), 8.01 (br s, 2H), 7.71 (d, 2H, ${}^{3}J_{2-1} = 8.4$ Hz), 7.64 (d, 2H, ${}^{3}J_{1-2} = 8.4$ Hz, ${}^{4}J_{1-3} = 1.2$ Hz), 6.75 (s, 1H), 4.17 (s, 6H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 162.9, 162.4, 152.1, 152.1, 142.5, 134.8, 129.8, 128.0, 127.6, 127.2, 126.8, 126.2, 124.9, 122.6, 122.4, 122.4,

122.3, 122.3, 118.0, 117.9, 117.9, 117.8, 111.0, 109.0, 96.4, 56.8. ESI-MS calcd $C_{24}H_{15}F_6N_2O_4$: 509.0931 (M+H), found 509.0925 (M+H).

DHBO 7

80%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 7.87 (br s, 4H), 7.51 (d, 2H, ${}^{3}J_{2-1}$ = 8.6 Hz), 7.42 (d, 2H, ${}^{3}J_{1-2}$ = 8.6 Hz, ${}^{4}J_{1-3}$ = 1.9 Hz), 4.08 (s, 6H, CH₃), 1.38 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 160.9, 152.3, 148.6, 148.2, 142.0, 123.3, 119.5, 117.0, 114.9, 109.8, 57.1, 35.0, 31.8.

General procedures for the synthesis of DHBO 4, 5 and 8

BBr₃ 1M (4 equiv.) was added dropwise to a Schlenck tube containing a solution of DHBO **2**, **3** or **7** in CH₂Cl₂. The mixture was stirred at rt overnight in the dark. Water (20 ml) was then added and the reaction mixture was extracted several times with CH₂Cl₂. The combined organic phases were dried over MgSO₄, filtered, and concentrated under vacuum to afford DHBO **4**, **5** or **8** as grey solids.

DHBO 4

73%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 12.02 (br s, 2H, OH), 8.68 (s, 1H), 7.73 (d, 2H, ${}^{4}J_{3-1}$ = 1.8 Hz), 7.54 (d, 2H, ${}^{3}J_{2-1}$ = 8.7 Hz), 7.44 (d, 2H, ${}^{3}J_{1-2}$ = 8.7 Hz, ${}^{4}J_{1-3}$ = 1.9 Hz), 6.80 (s, 1H), 1.41 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 163.1, 162.6, 148.9, 147.2, 140.0, 126.9, 123.1, 115.8, 109.8, 104.8, 104.7, 35.2, 12.1 (M+H), found 457.27 (M+H).

31.9. ESI-MS calcd C₂₈H₂₈N₂O₄: 457.21 (M+H), found 457.27 (M+H).

DHBO 5

69%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 11,70 (br s, 2H, OH), 8.72 (s, 1H), 8.01 (s, 2H), 7.74 (d, 2H, ${}^{3}J_{2-1} = 8.6$ Hz), 7.68 (d, 2H, ${}^{3}J_{1-2} = 8.6$ Hz), 6.83 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 163.9, 163.8, 150.9, 150.9, 140.3, 128.5, 128.1, 127.8, 125.9, 122.9, 122.9, 122.8, 122.8, 122.3, 117.0, 117.0, 116.9, 116.9, 111.2, 105.3,

104.2. ESI-MS calcd C₂₂H₁₁F₆N₂O₄: 481.0618 (M+H), found 481.0604 (M+H).

DHBO 8

88%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 12.45 (br s, 2H, OH), 7.62 (br s, 4H), 7.22 (d, 2H, ${}^{3}J_{2-1} = 8.7$ Hz), 7.41 (d, 2H, ${}^{3}J_{1-2} = 8.7$ Hz), 1.38 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 160.9, 152.3, 148.6, 148.2, 142.0, 123.3, 119.5, 117.0, 114.9, 109.8,

57.1, 35.0, 31.8. ESI-HRMS Calcd. for C₂₈H₂₈N₂O₄: 457.2122 (M+H), found 457.2136 (M+H).

Borate complex 9

To a stirred solution of DHPO **4** in freshly distilled 1,2dichloroethane, $BF_3.Et_2O$ (6 equiv.) was syringed under argon. After 5 min., N,N-Diisopropylethylamine (DIEA) (6 equiv.) was added and the resulting mixture stirred at 40 °C for 1 h. The crude solution was filtered through a column of basic Al_2O_3 , eluting with CH_2Cl_2 , to afford clean complex **9** as a white powder after evaporation of the

solvents *in vacuo* (64%).¹H NMR (300 MHz, CDCl₃) δ (ppm) = 8.66 (s, 2H), 7.93 (s, 2H), 7.66 (s, 4H), 6.96 (s, 2H), 1.42 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 165.5, 160.4, 152.4, 147.0, 130.7, 125.9, 125.7, 113.7, 111.0, 109.2, 101.8, 35.7, 31.7. HRMS (ESI) Calcd. for C₂₈H₂₆B₂F₄K₁N₂O₄: 591.1656 (M + K), found: 591.1649 (M + K).

General Procedure for the synthesis of borate complexes 10-12

To a stirred solution of the corresponding DHBO in toluene (0.1 mL/mg), BPh₃ (6 equivalents) was added as a powder under argon. The resulting mixture was stirred at 60°C for 1 hour. The crude solution was then filtered through a column of basic Al_2O_3 , eluting with CH_2Cl_2 and the solvents were evaporated *in vacuo*. Pure BPh₂ DHBO borate complexes **10-12** were obtained as white powders after recrystallisation in pentane or cyclohexane.

Borate complex 10

62%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.35 (s, 1H), 7.54 (d, 2H, ${}^{3}J_{2-1}$ = 8.8 Hz), 7.44 (d, 2H, ${}^{3}J_{1-2}$ = 8.8 Hz), 7.47-7.43 (m, 12H, CH Ar), 7.29-7.24 (m, 8H, CH Ar), 6.95 (s, 1H), 6.92 (d, 2H, ${}^{4}J_{3-1}$ = 1.8 Hz), 1.16 (s, 18H, 'Bu). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 169.3, 160.2, 150.7, 147.1, 133.1, 133.0, 128.8, 127.4, 127.3, 127.2, 127.0, 126.1, 123.9, 114.4, 110.3, 109.6, 102.5, 35.1, 31.3. HRMS (ESI)

Calcd. for C₅₂H₄₆B₂K₁N₂O₄: 823.3292 (M + K), found: 823.3286 (M + K).

Borate complex 11

93%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 8.44 (s, 1H), 7.77 (d, 2H, ${}^{3}J_{2-1}$ = 8.6 Hz), 7.71 (d, 2H, ${}^{3}J_{1-2}$ = 8.6 Hz, ${}^{4}J_{1-3}$ = 1.2 Hz), 7.42-7.38 (m, 8H, CH Ar), 7.31-7.27 (m, 12H, CH Ar), 7.22 (br s, 2H), 6.95 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 170.3, 161.8, 150.6, 134.8, 133.6, 133.0, 131.2, 130.1, 129.8, 129.2, 128.4, 128.1, 127.8, 127.6, 127.5, 124.1, 115.3, 112.1, 109.9, 102.2. HRMS (ESI)

Calcd. for C₄₆H₂₈B₂F₆NaN₂O₄: 831.2046 (M + Na), found: 831.1951 (M + Na).

Borate complex 12

58%. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 7.65 (s, 2H), 7.62 (d, 2H, ${}^{3}J_{2\cdot1}$ = 8.9 Hz), 7.51 (d, 2H, ${}^{3}J_{1\cdot2}$ = 8.7 Hz, ${}^{4}J_{1\cdot3}$ = 1.8 Hz), 7.44-7.40 (m, 8H, CH Ar), 7.27-7.23 (m, 12H, CH Ar), 6.89 (d, 2H, ${}^{4}J_{3\cdot1}$ = 1.8 Hz), 1.43 (s, 18H, 'Bu). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 160.1, 154.3, 151.2, 147.8, 134.8, 133.3, 133.3, 128.1, 127.5, 127.0, 125.2, 116.4, 116.1, 114.9, 111.0, 35.3, 31.4, 27.1. HRMS (ESI) Calcd. for C₅₂H₄₆B₂K₁N₂O₄: 823.3292 (M + K), found: 823.3278 (M + K). S3 ¹H and ¹³C NMR Spectra

RMN ¹H (CDCl₃, 300MHz) <u>1</u>

RMN ¹H (CDCl₃, 300MHz) <u>2</u>

RMN ¹³C (CDCl₃, 75MHz) **2**

RMN ¹H (CDCl₃, 300MHz) <u>3</u>

RMN ¹³C (CDCl₃, 75MHz) <u>3</u>

RMN ¹H (CDCl₃, 300MHz) <u>4</u>

RMN ¹³C (CDCl₃, 75MHz) **<u>4</u>**

RMN ¹H (CDCl₃, 300MHz) <u>5</u>

RMN ¹³C (CDCl₃, 75MHz) <u>5</u>

RMN ¹H (CDCl₃, 300MHz) <u>6</u>

RMN ¹³C (CDCl₃, 75MHz) <u>6</u>

RMN ¹H (CDCl₃, 300MHz) <u>7</u>

RMN ¹³C (CDCl₃, 75MHz) <u>7</u>

RMN ¹H (CDCl₃, 300MHz) <u>8</u>

RMN ¹³C (CDCl₃, 75MHz) <u>8</u>

RMN ¹H (CDCl₃, 300MHz) <u>9</u>

RMN ¹³C (CDCl₃, 75MHz) <u>9</u>

RMN ¹H (CDCl₃, 400MHz) <u>10</u>

RMN ¹³C (CDCl₃, 100MHz) <u>10</u>

RMN ¹H (CDCl₃, 300MHz) <u>11</u>

RMN ¹³C (CDCl₃, 100MHz) <u>11</u>

RMN ¹H (CDCl₃, 300MHz) <u>12</u>

RMN ¹³C (CDCl₃, 100MHz) <u>12</u>

S4 Spectroscopic data

Fig S4.1 Excitation (red) and emission (blue) of DHBO dye 4 in the solid-state (KBr pellet)

Fig S4.2 Excitation (red) and emission (blue) of DHBO dye 8 in the solid-state (KBr pellet)

Fig S4.3 Emission of DHBO dyes 9 (red) , 10 (purple) and 11 (blue) in the solid-state (KBr pellet)

				I	Mass S	pectrum	n Mole	cula	r Form	ula Report				
Analysis Info Analysis Name Method Sample Name Comment		D:1		vice mass	2015\037		^t Bu ~ O			Acquisition Date	11/27/	11/27/2015 4:25:49 PM		
		esi low pos.m			2015/05/6665K			l	Operator	Administrator				
		KB	377				MeO		Э	Instrument	micrO	TOF	66	
							2							
Acquis	ition Param	eter								Set Corrector	Fill	74 V		
Source	Туре	ES	SI		le	on Polarity	F	Positive		Set Pulsar Pu	ll ch	817 V		
Scan Ra	ange egin	50	m/z		L L	apiliary Exit	50.0 V		Set Reflector	IST	1700 V			
Scan En	nd	30	00 m/z		S	Skimmer 1 50				Set Flight Tub	e	8600 V		
					H	lexapole 1	2	24.3 V		Set Detector	TOF	2275 V		
Intens.												+MS	, 0.2-0.2min #	#(14-15)
x105-					4	85.2380								
0.8-														
0.6-						1								
0.4-						1								
0.4						486.2	402							
0.2						/\ _ A	487.2	2439						
×105												C 30 H	1 33 N 2 O 4	,485.24
1.0					4	85 2435								5
0.8-					-	1								
0.6						1								
0.0														
0.41						486.2	467							
0.2-						N A	487.	2497						
0.0	482 484			484	486 488			3	490	492		494	m/z	
	Sum F	ormula	Sigma	m/z	Err (ppm)	Mean Err (pp)	n] rdb	N Rule	e ⁻					
	C 30 H 33 N	204	0.05	485.2435	11.39	11.	00 15.50	ok	even					
	C 30 H 32 N	204	0.61	484.2357	1.96	2.3	16.00	-	odd					
	C 30 H 31 N	204	0.71	483.2278	-8.08	-8.	26 16.50	ok	even					

Service de spectrometrie de masse - Institut de Chimie - Strasbourg - UMR 7177 CNRS / UDS

Acquisition Parameter											
Source Type	ESI	Capillary	4500 V	Nebulizer	0.4 Bar	Corona	219 nA				
Ion Polarity	Positive	Set Capillary Exit	80.0 V	Dry Gas	4.0 l/min	Set Hexapole RF	60.0 V				
Scan Range	n/a	Set Skimmer 1	50.0 V	Dry Heater	180 °C	APCI Heater	514 °C				

Mass Spectrum Molecular Formula Report

				Mas	s Spec	trum Mol	ecula	r Fo	rmu	la Report			
Analysis Info Analysis Name Method Sample Name Comment		D:\Data\S esi wide p KB388	ervice ma os.m	asse 2015∖	037756SK.	d $^{'Bu}$ O O $^{'Bu}$ N $^{'Bu}$ N $^{'Bu}$ $^$			- ^t Bu	Acquisition Date Operator Instrument	11/19/2015 11:26:51 AM Administrator micrOTOF 66		
Acqui Source Scan R Scan B Scan E	sition Para Type lange legin ind	meter ESI n/a 50 m/z 3000 m/z			lon Polari Capillary Hexapole Skimmer Hexapole	ty Exit RF 1 1	Positive 150.0 V 220.0 V 50.0 V 24.3 V			Set Corrector Fill Set Pulsar Pull Set Pulsar Push Set Reflector Set Flight Tube Set Detector TOF	65 V 817 V 817 V 1700 V 8600 V 2275 V		
Intens. 600- 400- 200- 0-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	823.32	824.3278 825.33	350				+ C 52 H 46 E	MS, 0.0-0.2min #(2-13)	
600- 400- 200- 0-	816 C 52 H 46 C 52 H 47 C 52 H 47	818 Sum Formula B2K1N2O4 B2K1N2O4 B2K1N2O4 B2K1N2O4	820 Sigma 0.03 0.35 0.35 0.54	8 821.3348 8 m/z 823.3275 822.3197 824.3354 921.2119	823.32 22.3316 22 Err [ppm] -1.28 -5.79 13.20 -14.60	824.3316 825.33 824 Mean Err [ppm 1.7(-5.9(12.54 -14.6	826.3333 826 rdb 5 31.50 5 32.00 4 31.00 4 32.50	N Rule ok	28 even odd oven	830 83	2 834	. 836 m/z	

Mass Spectrum Molecular Formula Report

Bruker Daltonics DataAnalysis 3.3

				Mas	s Spec	trum Mole	cula	r For	mula	a Report			
Analys	sis Info	DID-1-10			00770001/		$\cap \mathcal{O}$			Acquisition Date	11/19/2015 9:40:08 AM		
Analysis Name Method Sample Name Comment		D:\Data\Si esi wide p KB369	os.m	asse 2015\	U37739SK.					Operator nstrument	Administrator micrOTOF	66	
Acquis	sition Para	meter			0000 0000000					Set Corrector Fill	65 V		
Source Scan R	Type ange	ESI n/a			Ion Polari Capillary	ty F Exit	Positive t 150.0 V			Set Pulsar Pull Set Pulsar Push	817 V 817 V		
Scan Begin Scan End		50 m/z 3000 m/z	50 m/z Hexapole RI 3000 m/z Skimmer 1 Hexapole 1			RF 1 1 5 1	₹F 220.0 V 50.0 V 24.3 V			Set Reflector Set Flight Tube Set Detector TOF	1700 V 8600 V 2275 V		
Intens.					199						+	MS, 0.0-0.1mi	in #(2-10)
400					8	323.3278							
300													
200					822.3308	824.3262							
100					A	A A	٨						
0 500								<u> </u>	~~~~		C 52 H 46 B	2 K 1 N 2 O 4	4 ,823.33
400					8	323.3292							
300						824 2246							
200					822.3316	824.3316							
100				821.3	3348	8	25.3322 / 82	6.3333					
0	816	818	8	20	822	824	82	6	82	8 830	832	834	m/z
		Sum Formula	Sigma	m/z	Err [ppm]	Mean Err [ppm]	rdb	N Rule	e ⁻				
	C 52 H 46	B2K1N2O4	0.09	823.3275	-0.36	2.86	31.50	ok	even				
	C 52 H 43	7B2K1N204	0.34	824 3354	-4.8/	-4.09	32.00	-	odd				
	C 52 H 44	B2K1N204	0.54	821.3119	-13.67	-13.64	32.50	ok	even				