Supporting Information

Zeolitic Imidazole Framework-67 as an Efficient Heterogeneous Catalyst in the Conversion of CO₂ to Cyclic Carbonate

Bibimaryam Mousavi^{a\$}, Somboon Chaemchuen^{a\$}, Behrooz Moosavi,^e Zhixiong Luo^{a,b},

Nadia Gholampour,^a Francis Verpoort^{a,b,c,d*}

^a Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China. Email addresses: <u>Francis.verpoort@ugent.be</u>, <u>Francis@whut.edu.cn</u> (F. Verpoort).

^b School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.

^cNational Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russian Federation.

^dGhent University Global Campus Songdo, 119 Songdomunhwa-Ro,Yeonsu-Gu, Incheon 406-840, South Korea

^e Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China

^{\$} These authors contributed equally to this work

sample	BET (m²/g)	Langmuir (m²/g)	Pore volume (cm ³ /g)	Pore size (Å)HK
			НК	
ZIF-8	1753	1792	0.7092	12.86
ZIF-67	1514	1721	0.5588	12.54

Table S1. The surface area of ZIF-67 evaluated from BET and Langmuir theoretical calculations.

Complete	Acidic sites	Basic sites	
Samples	mmol/g, NH₃-TPD	μ mol/g, CO ₂ -TPD	
(Zn)ZIF-8	(0.13775*0.294)/0.1= 0.405	(0.00852*0.0176)/0.03 = 4.99	
(Co)ZIF-67	(0.10721*0.294)/0.1= 0.315	(0.00898* 0.0176)/0.03= 5.26	

Table S2. NH₃-TPD and CO₂-TPD profiles of ZIF-67 and ZIF-8.

CALCULATION OF ACIDITY

Calculation of total acidity.

Total acidity is calculated from the NH₃-TPD profiles:

The NH₃-TPD profiles:

- area of the NH₃-TPD profiles of the sample = A
- The mole of NH_3 was calculated from the calibration curve of NH_3 as formula:

The mole of NH_3 of the sample = $0.294 \times A$ mmole.

- Amount of sample = B g.

The calibration curve of ammonia from Micromeritics Chemisorp 2750

CALCULATION OF BASICITY

Calculation of total basicity.

Total basicity is calculated from the CO₂-TPD profiles:

The CO₂-TPD profiles:

- area of the CO₂-TPD profiles of the sample = A
- The mole of CO₂ was calculated from the calibration curve of CO₂ as formula:

The mole of CO_2 of the sample = 0.0176×A mmole.

- Amount of sample = B g.

The total basicity of sample = <u>The mmole of CO_2 of the sample</u>

Amount of dry catalyst

The calibration curve of carbon dioxide from Micromeritics Chemisorp 2750

Figure S1. (left) Scanning electron microscope image (SEM) of ZIF-67 before reaction, (right) Scanning electron microscope image (SEM) of ZIF-67 after reaction (scale bar: 1.0 μm).

Figure S2. Thermal gravimetric analysis (TGA) curve of ZIF-67.

Figure S3. FT-IR spectra of 2-methylimidazole (blue), fresh ZIF-67 and reused ZIF-67.

Figure S5. The effect of different CO₂ pressure ZIF-67. (¹H NMR in CDCl₃ (500 MHz)).

Figure S8. (left) NH₃-TPD and (right) CO₂-TPD profiles of ZIF-67 (red) and ZIF-8 (black).

 ^1H NMR in CDCl_3 500 MHz

Epichlorohydrin: ¹H NMR (500 MHz, CDCl3): δ [d,e] 3.57-3.63 (m, 2H), [c] 3.23 (m, 1H), [a,b] 2.68 (m, 1H), 2.88 (m, 1H).

Chloropropene carbonate: ¹H NMR (500 MHz, CDCl3): δ [c']: 4.90-5.02 (m, 1H), [a',b']: 4.61 (t, J = 8.6 Hz, 1H), 4.45 (dd, J = 8.9, 5.7 Hz, 1H), [d']: 3.68-3.78 (m, 1H). ¹³C NMR (100 MHz, CDCl3): δ 154.5, 74.5, 67.0, 44.1.

The conversion of the reaction was calculated by measuring the ratio of peak c integration to c'. $^1\!H$ and $^{13}\!C$

4-phenyloxymethyl-1,3-dioxolan-2-one: ¹H NMR (500 MHz, CDCl₃); δ (ppm) 4.17 (dd, 1H), 4.24 (dd, 1H), 4.54 (dd, 1H), 4.61(t, 1H), 5.03 (m, 1H), 6.94 (m, 2H), 7.03 (t, 1H), 7.31(m, 2H)

4-phenyl-1,3-dioxolan-2-one: ¹H NMR (500 MHz, CDCl₃); 4.36 (t, 1H), 4.8 (t, 1H) 5.68 (t, 1H) 7.30-7.45(m, 5H)

Propylene carbonate: ¹H NMR (500 MHz, CDCl₃); 1.50 (t, 3H), 4.04(m, 1H), 4.55(m, 1H), 4.86(m, 1H)

Hexahydrobenzo[*d*][1,3]dioxol-2one: ¹H NMR (500 MHz, CDCl₃); 1.41-1.54 (m, 4H), 1.81 (m, 2H), 4.52 (m,2H). ¹³C NMR (100 MHz, CDCl3): 20.1 , 27.8, 76.3, 156.1