Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information

Deciphering the liaison of CHEF-PET-ESIPT mechanism in a Zn²⁺chemosensor and its applications in cell imaging study

Atanu Jana^a, Bhriguram Das^b, Sushil K. Mandal^c, Subhabrata Mabhai^d, Anisur R. Khuda-Bukhsh^e and Satyajit Dey*^b

^aDepartment of Chemistry, Indian Institute of Technology Delhi, HauzKhas, New Delhi 110016, India.

*bDepartment of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No.

721636, Email: <u>satyajitdeyoc@gmail.com</u>

^cDepartment of Ecological Engineering and Environmental Management, University of Kalyani, Kalyani -741235, India

^dDepartment of Chemistry, Mahishadal Raj College,East Midnapore, Mahishadal, West Bengal, Pin No. 721628, India.

^eCytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani -741235, India

Contents

Figure/Scheme	Page
Figure S1. Mass of the Chemosensor (L)	S3
Figure S2. Proton NMR of the Chemosensor (L)	<u>S4</u>
Figure S3 Mass Spectrum of the L- Zn^{2+} complex	85
Figure S4. IR spectrum of the L	<u>S6</u>
Figure S5. IR spectrum of the L-Zn ²⁺ complex	S7
Figure S6. Image under UV light (365 nm)	S7
Figure S7. Benesi-Hildebrand plot of L (40 μ M) for Zn ²⁺ determined by	S8
fluorescence method in a HEPES buffer [50 μ M, DMSO:water = 1:9 (v/v), pH=7.2]	
at 25 °C	
Figure S8. Job's plot of Fluorescence intensity at 495 nm of L and Zn^{2+} with a total	S8
concentration of 20 μ M cations in a HEPES buffer [50 μ M, DMSO:water = 1:9	
(v/v), pH = 7.2] at 25°C	60
Figure S9. The limit of detection (LOD) and limit of quantification (LOQ) were	89
calculated using $3\sigma/S$ and $10\sigma/S$ methods, respectively. $\sigma =$ the standard deviation of	
y-intercept of regression line, $S =$ the slope of the calibration curve.	<u>C0</u>
Figure S10. Effect of pH on the Chemosensor L (40 μ M)	<u>89</u>
Figure S11. Emission spectral changes of L-Zn ² complex (40 μ M) upon addition of	S10
EDTA in a HEPES buffer [50 μ M, DMSO:water =1:9 (V/V), pH=7.2] at 25 °C.	
$EDTA = 0.80 \mu M$. Figure S12 LW Via graatmum of L (40 mM) taken in different solvents in a LIEDES	610
Figure S12. UV-VIS spectrum of L (40 μ VI) taken in different solvents in a HEPES buffer [50 μ M, DMSO(water = 1:0 (μ / μ)) rH=7.21 et 25°C. Plack curve = EtOU:	510
build [50 μ M, DMSO.wale = 1.9 (V/V), pn=7.2] at 25 C. Black curve = ElOH, Pod curve = DME: Plue curve = DMSO	
Figure S13 UV Vis spectrum of I $\mathbf{7n^{2+}}$ complex (40 µM) taken in different	§ 11
Figure S13. 0V-VIS spectrum of L-ZM complex (40 μ M) taken in unrelent solvents in a HEPES buffer [50 μ M DMSO:water = 1.9 (y/y) nH = 7.2] at 25°C	511
Solvents in a TELES burlet [50 μ W, DWSO.water = 1.5 (V/V), pH = 7.2] at 25 °C. Black curve = EtOH: Red curve = DMF: Blue curve = DMSO	
Didek curve Etori, ked curve Divir, Dide curve Diviso.	
Figure S14. Fluorescence spectrum of Chemosensor L (40 µM) as well as the L-	S11
Zn^{2+} complex taken in different solvents in a HEPES buffer [50 µM. DMSO:water =	
1:9 (v/v), pH = 7.2] at 25°C. Black curve = L (in DMF), Blue curve = L (in DMSO).	
Pink curve = L (in EtOH), Red curve = $L-Zn^{2+}$ (in DMF), Green curve = $L-Zn^{2+}$ (in	
DMSO), yellowish green curve = $L-Zn^{2+}$ (in EtOH).	

Figure S1. Mass of the Chemosensor (L)

Figure S2. Proton NMR of the Chemosensor (L)

Figure S3. Mass Spectrum of the L-Zn²⁺ complex.

Figure S4. IR spectrum of the L

Figure S5. IR spectrum of the L-Zn²⁺ complex.

Figure S6. Image under UV light (365 nm)

Figure S7. Benesi-Hildebrand plot of L (40 μ M) for Zn²⁺ determined by fluorescence method in a HEPES buffer [50 μ M, DMSO:water=1:9 (v/v), pH=7.2] at 25°C

Figure S8. Job's plot of Fluorescence intensity at 495 nm of L and Zn^{2+} with a total concentration of 20 μ M cations in a HEPES buffer [50 μ M, DMSO:water=1:9 (v/v), pH=7.2] at 25°C

Figure S9. The limit of detection (LOD) and limit of quantification (LOQ) were calculated using $3\sigma/S$ and $10\sigma/S$ methods, respectively. σ = the standard deviation of y-intercept of regression line, S = the slope of the calibration curve.

Figure S10. Effect of pH on the Chemosensor L (40 μ M)

Figure S11. Emission spectral changes of L-Zn²⁺complex (40 μ M) upon addition of EDTA in a HEPES buffer [50 μ M, DMSO:water=1:9 (v/v), pH=7.2] at 25°C.EDTA = 0-80 μ M.

Figure S12. UV-Vis spectrum of L (40 μ M) taken in different solvents in a HEPES buffer [50 μ M, DMSO:water=1:9 (v/v), pH=7.2] at 25°C. Black curve = EtOH; Red curve = DMF; Blue curve = DMSO.

Figure S13. UV-Vis spectrum of $L-Zn^{2+}$ complex (40 μ M) taken in different solvents in a HEPES buffer [50 μ M, DMSO:water = 1:9 (v/v), pH=7.2] at 25°C. Black curve = EtOH; Red curve = DMF; Blue curve = DMSO.

Figure S14. Fluorescence spectrum of Chemosensor L (40 μ M) as well as theL-Zn²⁺Complex taken in different solvents in a HEPES buffer [50 μ M, DMSO:water=1:9 (v/v), pH=7.2] at 25°C. Black curve = L (in DMF), Blue curve = L (in DMSO) Pink curve = L (in EtOH); Red curve = L-Zn²⁺ (in DMF), Green curve = L-Zn²⁺ (in DMSO) yellowish green curve = L-Zn²⁺ (in EtOH).