Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary File

Hydrothermal synthesis of two supramolecular inorganic organic hybrid phosphomolybdates based on Ni (II) and Co(II): structural diversity and heterogeneous catalytic activities

Luna Paul, Malay Dolai, Anangamohan Panja and Mahammad Ali

Table S1: Selected bond lengths (Å) and angles (°) for 1 and 2

Mo1-Mo2	2.5754(11)	Mo4-O18	2.095(3)
Mo1 -O4	2.299(3)	Mo5-O3	2.283(3)
Mo1 -O5	1.932(3)	Mo5-O18	2.091(3)
Mo1 -O6	1.676(3)	Mo5-O21	2.048(3)
Mo1 -O7	2.096(3)	Mo5-O22	1.943(3)
Mo1 -O8	2.052(3)	Mo5-O23_a	1.673(3)
Mo1-O14	1.978(3)	Mo5 -O24	1.970(3)
Mo2-O2	2.295(3)	Mo6 -O2	2.277(3)
Mo2 -O5	1.927(3)	Mo6 -O22	1.943(3)
Mo2 -O27	2.099(3)	Mo6 -O24	1.981(3)
Mo2 -O30	2.047(4)	Mo6-O25	1.671(3)
Mo2-O31	1.678(4)	Mo6-O26	2.045(4)
Mo3 -Mo4	2.5863(11)	Mo6 -O27	2.092(3)
Mo3 -O4	2.281(3)	Ni1-O13	2.165(3)
Mo3 -O7	2.092(3)	Ni1-O14	2.141(3)
Mo3-O11	2.047(3)	Ni1 -O24	2.145(3)
Mo3 -O12	1.678(4)	Ni1–O13_a	2.165(3)
Mo3 -O15	1.944(4)	Ni1 -O24_a	2.145(3)
Mo4 -O3	2.284(3)	Mo3 -O13_a	1.977(3)
Mo4 -O13_a	1.971(3)	Ni1-O14_a	2.141(3)

(ia) Selected Bond length of complex 1

Symmetry Code: a = 1-x, 1-y, 2-z.

Mo2-Mo1-O4	88.75(7)	O3-Mo4-O18	73.44(10)
Mo2-Mo1-O5	48.05(8)	O3-Mo4-O13_a 81.01(11)	
Mo2-Mo1-O6	99.63(10)	O15-Mo4-O18	156.05(14)
Mo2-Mo1-O7	134.17(7)	O16-Mo4-O17	96.99(17)
Mo2-Mo1-O8	134.89(11)	Mo6-Mo5-O21	134.38(11)
O4-Mo1-O5	82.87(11)	O22-Mo5-O24	95.57(12)
O4-Mo1-O6	170.82(14)	O24-Mo6-O25	101.93(17)
O5-Mo1-O6	105.52(15)	O25-Mo6-O26	96.36(16)
O5-Mo1-O7	155.66(11)	013-Ni1-O14	85.16(10)
O6-Mo1-O7	97.97(15)	013-Ni1-O24	83.78(11)
Mo1-Mo2-O2	89.23(7)	O13-Ni1-O13_a	180.00
Mo1-Mo2-O5	48.20(9)	O13-Ni1-O14_a	94.84(10)
Mo1-Mo2-O14	49.39(8)	O24-Ni1-O24_C	180.00
Mo1-Mo2-O27	135.19(7)	O13_a-Ni1-O14_a	85.16(10)
Mo1-Mo2-O30	132.37(8)	O13_a-Ni1-O24_a	83.78(11)
027-Mo2-O30	77.89(11)	Mo4-O3-Mo5	99.59(11)
Mo4 Mo3 O11	133,23(10)	Mo3 a O13 Ni1	125 33(13)
M04-M03-011	133.23(10)	Mids_a-013-Nil	133.33(13)
M04-M03-O15	48.36(9)	M04_a-013-N11	134.49(14)
O4-Mo3-O11	78.89(12)	Mo3-O15-Mo4	83.35(15)
O7-Mo3-O11	85.65(11)	Mo4-O18-Mo5	112.85(13)
O11-Mo3-O15	85.20(13)	Mo5-O24-Ni1	134.05(14)
O12-Mo3-O15	105.16(16)	Mo6-O24-Ni1	135.10(13)
Mo3-Mo4-O3	88.92(7)	Mo2-Mo1-O14	49.37(8)
Mo3-Mo4-O18	134.05(7)	O4-Mo1-O7	73.32(11)
O4-Mo1-O8	79.50(10)	O14-Mo2-O27	86.64(11)
O4-Mo1-O14	80.45(10)	O27-Mo2- O30	84.63(11)
O5-Mo1-O8	87.12(14)	O30-Mo2- O31	99.25(16)
O5-Mo1-O14	95.45(12)	O4-Mo3- O12	17.20(15)
O6-Mo1-O8	96.94(13)	O3-Mo5- O18	73.54(10)
O6-Mo1-O14	102.11(13)	O18-Mo5- O21	84.07(13)
O7-Mo1-O8	83.73(13)	O21-Mo5- O22	86.51(14)
O7-Mo1-O14	85.65(11)	O2-Mo6- O22	83.68(10)

(ib)Selected Bond angles of complex 1

O8-Mo1-O14	159.30(10)	O2-Mo6- O24	80.80(11)
Mo1-Mo2-O31	99.21(11)	O26-Mo6- O27	84.78(12)
O2-Mo2-O31	170.51(13)	Mo4-Mo3-O4	89.23(7)

Symmetry Code: a = 1-x,1-y,2-z.

(iia)Selected Bond length of complex 2

1.928(6)
1.709(5)
2.277(4)
1.928(6)
1.938(5)
2.317(6)
1.717(6)
1.714(5)
1.914(5)
2.188(5)
2.330(4)
1.729(6)
1.8912(17)
2.292(6)
1.702(5)
1.925(5)
2.075(6)
2.131(7)
2.094(5)
2.075(6)
2.131(7)
2.094(5)
1.559(6)
1.535(5)
1.548(5)

Symmetry Code: a = 1-x, y, 1/2-z, b = 1-x, -y, -z

O1-Mo1-O2	101.9(3)	O1_a -Mo1-O2_a	101.9(3)
O1-Mo1-O3	73.0(2)	O1_a -Mo1-O3_a	73.0(2)
O1-Mo1-O1_a	146.91(18)	O2_a-Mo1 -O3_a	88.49(19)
O1-Mo1-O2_a	98.5(3)	O1-Mo2-O3	71.9(2)
O1-Mo1-O3_a	81.8(2)	O1-Mo2-O4	95.3(2)
O2-Mo1-O3	88.49(19)	O1-Mo2-O5	100.3(2)
O1_a-Mo1-O2	98.5(3)	O1-Mo2-O6	152.7(2)
O2-Mo1-O2_a	103.2(2)	O1-Mo2 -O8_a	81.84(18)
O2-Mo1-O3_a	167.0(2)	O3 -Mo2 -O4	164.1(2)
O1_a -Mo1-O3	81.8(2)	O3-Mo2-O5	87.7(2)
O2_a-Mo1-O3	167.0(2)	O3-Mo2-O6	89.0(2)
O3-Mo1-O3_a	80.59(15)	O3-Mo2-O8_a	72.86(19)
O4-Mo2-O5	104.3(3)	O4-Mo2-O6	99.4(2)
O4-Mo2-O8_a	96.4(2)	O5-Mo2-O6	98.2(2)
O5-Mo2-O8_a	158.9(3)	O6-Mo2-O8_a	73.86(18)
O8-Mo3-O9	84.7(2)	O8-Mo3-O10	85.2(2)
O8-Mo3-O11	86.57(17)	O8-Mo3-O12	167.95(19)
O6_a-Mo3-O8	70.37(18)	O9 -Mo3-O12	102.5(3)
O10-Mo3-O12	103.0(2)	O6_a-Mo3-O11	76.4(2)
O13_b-Co1-O15_b	84.7(3)	O14_b-Co1-O15_b	88.3(2)
O13-Co1-O14	91.3(2)	O13 -Co1-O15	84.7(3)
O13-Co1-O13_b	180.00	O13-Co1-O14_b	88.7(2)
O13-Co1-O15_b	95.3(3)	O14-Co1-O15	88.3(2)
O13_b-Co1-O14	88.7(2)	O14-Co1-O14_b	180.00
O14-Co1-O15_b	91.7(2)	O13_b-Co1-O15	95.3(3)
O14_b-Co1-O15	91.7(2)	O15-Co1-O15_b	180.00
Co1-O14-H5	116(12)	Со1-О15-Н8	116(12)
Со1-О15-Н7	127(14)	Mo1-O1-Mo2	120.8(3)

(iib)Selected Bond angles of complex 2

Symmetry Code: a =1-x,y,1/2-z; b = 1-x,-y,-z

A-B···C	Distance	Distance	Distance	Bond
	between	between	between	angle
	A-B (Å)	В•••С	A····C	(°)
		(Á)	(Á)	
N1-H1-010	0.91(5)	1.78(6)	2.641(6)	158(5)
N2-H2C···O35	0.9000	2.4400	2.941(14)	115.00
N2-H2C···O36	0.9000	2.0300	2.866(12)	153.00
N2-H2DO28	0.9000	1.7700	2. 671(6)	175.00
С2-Н2АО6	0.9700	2.4200	3.345(7)	159.00
С3-Н3ВО30	0.9700	2.5800	3.406(7)	143.00
C4-H4A···O31	0.9700	2.2300	3.094(7)	148.00
C5-H5B···O11	0.9700	2.5600	3.334(7)	137.00
С6-Н6А-О19	0.9700	2.3900	3.293(7)	154.00
С6-Н6ВО10	0.9700	2.3800	3.186(6)	140.00
С6-Н6ВО32А	0.9700	2.4300	3.013(11)	119.00
С9-Н9А…О21	0.9700	2.5400	3.324(7)	138.00
C10-H10A···O5	0.9700	2.5300	3.135(8)	120.00
C13-H13AO19	0.9700	2.5600	3.466(8)	155.00
C15-H15B-••O1	0.9700	2.5500	3.218(14)	126.00

Table S2. Hydrogen Bonds (Å, °) for <u>Complex 1</u>

Table S3. Hydrogen Bonds (Å, °) for Complex 2

A-B····C	Distance between	Distance	Distance between	Bond angle(°)
	A-B (Å)	between	A…C(Å)	
		B…C(Å)		
N1-H1011	0.90(15)	1.86(16)	2.732(8)	161(18)
N1-H1D07	0.94(19)	1.9(2)	2.736(12)	153(12)
N2 -H2N-016	0.79(8)	2.53(16)	2.802(11)	102(13)
N2 -H2NO18	0.79(8)	1.99(8)	2.744(10)	158(14)
O13- H3- O2	0.84(19)	1.88(16)	2.689(9)	161(17)
O13- H4••• O9	0.85(12)	2.55(14)	3.267(7)	142(11)
O14- H5 O1	0.86(18)	1.96(17)	2.735(8)	150(15)
O15- H7••• O7	0.85(10)	1.90(12)	2.684(7)	154(16)

О15- H8••• O2	0.9(2)	2.57(17)	3.053(7)	117(14)
O15- H8••• O17	0.9(2)	2.0(2)	2.866(11)	162(17)
O16- H16- O9	0.85(10)	1.90(17)	2.609(9)	154(17)
C1- H1A••• O4	0.9700	2.4300	3.258(10)	144.00
С2- Н2В…Об	0.9700	2.5200	3.450(9)	161.00
C2- H2B···· O12	0.9700	2.4500	3.176(9)	132.00
С4- Н4А…О7	0.9700	2.5900	3.251(9)	125.00
C4- H4B····O4	0.9700	2.5500	3.350(9)	140.00
С5- Н5В•••О4	0.9700	2.4100	3.275(11)	148.00

Table S4. Oxidation of styrene over POM based complexes 1 and 2^t.

catalyst	catalyst Conversio		Selectivity	
	n (%)	product	(%)	
1.	81.141	Benzaldehy	84.47	
		de		
2.	54.85	Benzaldehy	89.148	
		de		

^tReaction condition: 0.50 g substrate, 0.55 g 30% H_2O_2 , 10 ml MeCN, 0.02 g catalyst, 60°C temperature, maximum time 24 h.

Fig.S1 The supra-molecular H-bonded 3D network along crystallographic *b* axis in complex 2.

Fig.S2 (a)IR spectra of complex 1(Ni POM).

Fig.S2 (b)IR spectra of complex 2(Co- POM).

Fig.S3 Styrene conversion and benzaldehyde /styrene oxide formation respect to time for catalyst 1

Fig.S4 Styrene conversion and benzaldehyde/styrene oxide formation respect to time for catalyst 2.

Fig.S5Powder XRD plot of complex 1.

Fig.S6 (a) :IR spectra of reused complex 1(Ni POM).

Fig.S6(b) IR spectra of reused complex 2(Co POM).