Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information for: Synthesis and Photophysical Characteristics of 2,3,12,13-Tetraalkylbacteriochlorins

Shaofei Zhang, Han-Je Kim, Quan Tang, Eunkyung Yang, David F. Bocian,* Dewey Holten,* and Jonathan S. Lindsey*

Table of Contents

Se	Section			
1.	Acid catalysis survey of the self-condensation of a dihydrodipyrrin-carboxaldehyde	S 1		
2.	X-ray structural data for BC-MM	S3		
3.	Spectral data	S 3		

1. Acid catalysis survey of the self-condensation of a dihydrodipyrrin-carboxaldehyde

Scheme S1. Self-condensation of dihydrodipyrrin-carboxaldehyde S1-CHO.

1.1. Preparation of dihydrodipyrrin-carboxaldehyde S1-CHO.

1-Formyl-2,3-dihydro-3,3-dimethyl-7-(4-iodophenyl)dipyrrin (S1-CHO). A solution of **S1-Me**^{S1} (50 mg, 0.13 mmol) in 1,4-dioxane (2.6 mL) was treated with SeO₂ (21 mg, 0.19 mmol) at room temperature. The reaction mixture was stirred at room temperature and monitored via UV-Vis spectroscopy. After completion (in this case 2 h), the reaction mixture was treated with saturated aqueous NaHCO₃ solution and extracted with ethyl acetate. The organic extract was washed (brine), dried (Na₂SO₄), concentrated, and chromatographed [silica, hexanes/ethyl acetate (3:1)] to afford a red solid (30 mg, 57%): ¹H NMR δ 1.23 (s, 6H), 2.73 (s, 2H), 6.30 (s, 1H), 6.33 (m, 1H), 7.01 (m, 1H), 7.18 (d, *J* = 5.1 Hz, 2H), 7.75 (d, *J* = 5.1 Hz, 2H), 10.00 (s, 1H), 10.81 (br, 1H); ¹³C NMR δ 29.4, 41.3, 46.2, 91.9, 110.0, 112.5, 122.2, 127.3, 130.8, 136.0, 137.9, 161.3, 169.4, 190.2 (14 out of 15 distinct carbons were found); ESI-MS obsd 405.0465, calcd 405.0458 [(M + H)⁺, M = C₁₈H₁₇N₂OI].

1.2. Survey of acidic conditions. The reactions of **S1-CHO** in the presence of different acids were examined. Each reaction was carried out (1.0 mL scale) with 10 mM dihydrodipyrrin-carboxaldehyde **S1-CHO** and the indicated amount of acid in CH_2Cl_2 at room temperature in a microreaction vial. Each reaction was monitored by UV-Vis absorption spectroscopy. Once the starting material was consumed and the absorption spectrum no longer changed, the reaction mixture was quenched by the addition of saturated aqueous NaHCO₃ solution. The mixture was extracted with CH_2Cl_2 . The organic extract was washed, dried and concentrated to give the crude product. The resulting **BC-S1** and **TDC-S1** were checked via absorption spectroscopy.

For most reactions (Entries 2, 3-7, and 9), the absorption spectrum of each crude product showed a typical tetradehydrocorrin absorption pattern. Also, the MALDI-MS analysis of reaction mixture showed a major peak at m/z = 762.9, consistent with a tetradehydrocorrin wherein X = H (likely a product rather than precursor ion on the basis of consideration of the reaction of **S1-CHO**). If not a product ion, such a composition would be expected to tautomerize to give the tetradehydrocorrole. Regardless, the resulting putative **TDC-S1** was unstable on silica column chromatography and was not isolated; hence, the assignment remains unproven.

entry	acid	[acid], (mM)	time	BC-S1	TDC-S1
1	_b	-	48 h		
2	TsOH·H ₂ O in CH ₃ OH	10	16 h	<1% ^d	major ^e
3	TFA	10	1 h	C	
4	ZnCl ₂	10	16 h	C	major ^f
5	In(OTf) ₃	10	1 h	<1% ^d	major ^e
6	In(OTf) ₃	50	10 min	<1% ^d	major ^e
7	Sc(OTf) ₃	10	1 h	<1% ^d	major ^e
8	$Zn(OTf)_2$	10	90 min	C	trace
9	ZnBr ₂	50	30 min	<1%	major ^f

 Table S1.
 Survey conditions for self-condensation of S1-CHO.^a

^{*a*}All reactions were carried out (1.0 mL scale) with 10 mM **S1-CHO** and the indicated amount of acid in CH₂Cl₂ at room temperature. Each reaction was monitored by UV-Vis absorption spectroscopy. Products were detected with MALDI-MS. ^{*b*}No acid was added. ^{*c*}Not detected. ^{*d*}**BC-S1** was isolated by chromatography [silica, hexanes/CH₂Cl₂ (1:1)], characterized by UV-Vis absorption spectroscopy and MALDI-MS. ^{*e*}Observed by MALDI-MS and UV-Vis absorption spectroscopy but was not isolated. M = H, H. ^{*f*}Observed by MALDI-MS and UV-Vis absorption spectroscopy but was not be isolated. M = Zn.

Reference.

(S1) Balasubramanian, T.; Strachan, J.-P.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7919–7929.

2. X-ray structural data for BC-MM

Table S2. Summary of Crystal Data for BC-MM

CCDC registry			
Formula	$C_{28}H_{34}N_4$		
Formula Weight (g/mol)	426.59		
Crystal Dimensions (mm)	$0.136~\times~0.241~\times~0.483$		
Crystal System	Monoclinic		
Space Group	P2 _{1/c}		
Temperature, K	100(2)		
<i>a</i> , Å	7.6659(13)		
b, Å	15.982(3)		
<i>c,</i> Å	9.5235(15)		
α, deg	90		
β, deg	92.263(8)		
γ, deg	90		
$V, Å^3$	1165.9(3)		
Number of reflections to determine final unit cell	158		
Min and Max 20 for cell determination (deg)	7.262, 59.29		
Ζ	2		
F (000)	460		
ρ (g/cm)	1.215		
λ, Å, (ΜοΚα)	0.71073		
μ , (mm^{-1})	0.072		
Max 20 for data collection (deg)	2.49, 31.20		
Measured fraction of data	0.996		
Number of reflections measured	25895		
Unique reflections measured	3766		
R _{merge}	3.83%		
Number of parameters in least-squares	153		
R ₁	0.0436		
wR ₂	0.1184		
R ₁ (all data)	0.0547		
wR ₂ (all data)	0.1251		

3. Spectral data.

. .

