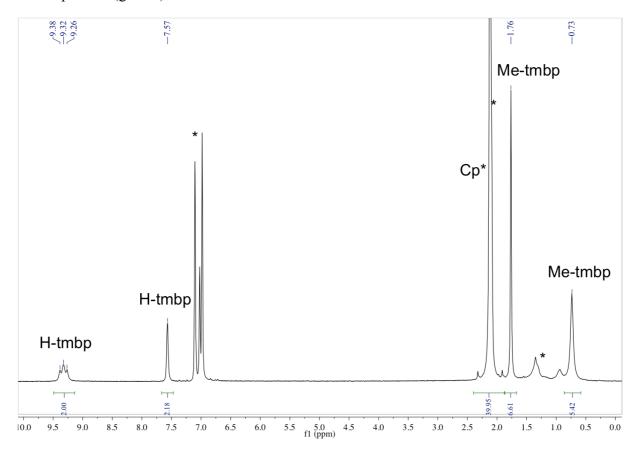

Supporting Information for the manuscript

Electron Transfer in Tetramethylbiphosphinine Complexes of Cp*₂Yb and Cp*₂Sm


Arnaud Jaoul, Carine Clavaguéra,* and Grégory Nocton*

LCM, CNRS, Ecole polytechnique, Université Paris-Saclay, 91128 Palaiseau, France

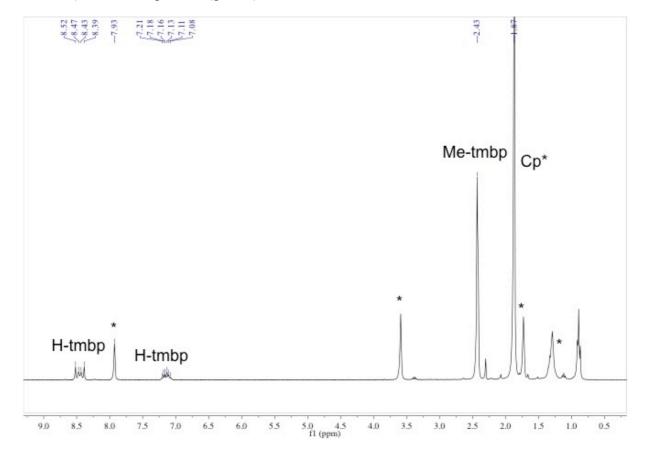
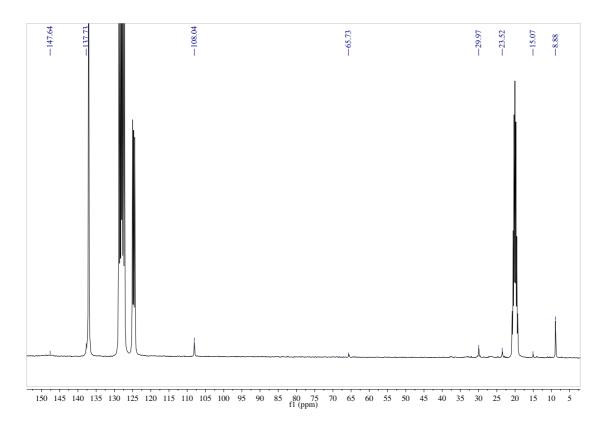
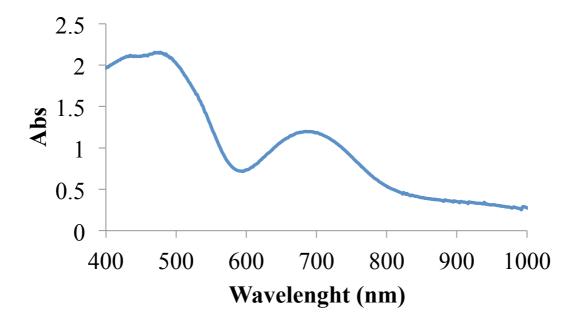
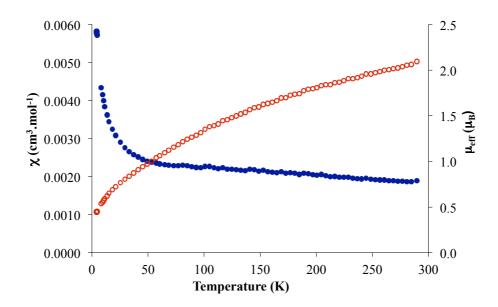

Figure S1: ¹H NMR of **1** at room temperature in toluene-d₈. * are for solvents (toluene) and impurities (grease).

Figure S2: ¹H NMR of **2** at room temperature in toluene-d₈. * are for solvents (toluene) and impurities (grease).

Figure S3: ¹H NMR of **2** at room temperature in thf-d₈. * are for solvents (thf and benzene) and and impurities (grease).

Figure S4: 13 C NMR of **2** at room temperature in toluene-d₈. The rather low concentration in toluene-d₈ did not allow observing all resonances after one weekend of acquiring the spectrum.

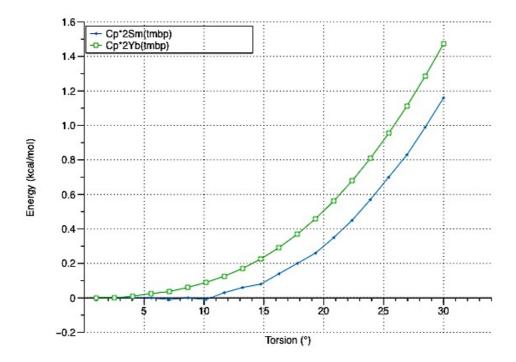

Figure S5: UV-Vis spectrum of 2 recorded in toluene at room temperature.

Figure S6: Temperature dependent magnetic data for 1. χ vs T is given as unfilled red dots, μ_{eff} vs. T as filled blue dots.

Figure S7: Energy profile as a function of the PCCP angle for both Sm and Yb complexes at the PBE-D3/SVP level.

The single-point energy calculations were performed at the DFT/PBE-D3/SVP level of theory with the ORCA 3.03 package. 1,2 Scalar relativistic effects were taken into account using ZORA Hamiltonian.

Table S1. Crystallographic parameters for 1 and 2.

	$[Cp*_2Sm(tmbp)](1)$	[Cp*2Yb(tmbp)](2)
Formula	$C_{34}H_{46}P_2Sm$	$C_{34}H_{46}P_2Yb$
Crystal size (mm)	0.6 x 0.06 x 0.03	0.16x0.14x0.12
cryst system	Monoclinic	triclinic
space group	P 21/c	P -1
volume (Å)	V = 3098.5(5)	V = 1526.9(2)
a (Å)	a = 15.389(1)	a = 9.821(1)
b (Å)	b = 11.081(1)	b = 10.697(1)
c (Å)	c = 18.832(1)	c = 15.776(1)
a (deg)	90.00	77.407(1)
b (deg)	105.234(1)	74.304(1)
g (deg)	90.00	75.918(1)
Z	4	2
formula weight (g/mol)	667	689.69
density (calcd) (g cm ⁻³)	1.43	1.500
absorption coefficient (mm ⁻¹)	2.02	3.188
F(000)	1368	700
temp (K)	150(1)	150(1)
diffractometer ^a	SMART APEX	SMART APEX
θ range for data collection (deg)	2.24 to 26.37	2.84 to 27.48
transmission range	0.865 - 0.941	0.6295 - 0.7009
absorption correction	Multi-scan	Multi-scan
total no. reflections	15409	12166
unique reflections [R _{int}]	6266 [0.072]	6658 [0.053]
final R ^b indices $[I > 2\sigma(I)]$	$R = 0.062, R_w = 0.1152$	$R = 0.0490, R_w = 0.1101$
R indices (all data)	$R = 0.0904, R_w = 0.1300$	$R = 0.0590, R_w = 0.1175$
largest diff. peak and hole (e.A ⁻³)	0.85 and -0.81	2.054 and -1.355
GooF	1.06	1.084

Figure S8: ORTEP and labeling scheme for 1. Thermal ellipsoids are at 50%.

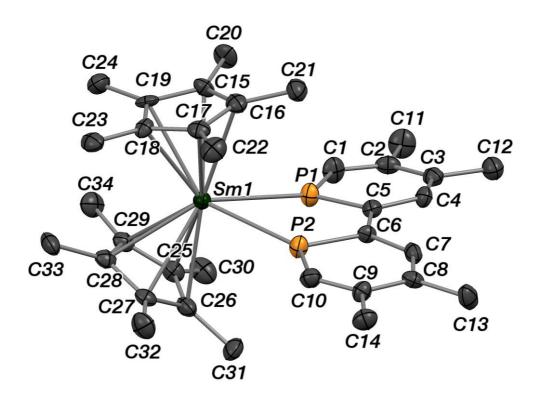
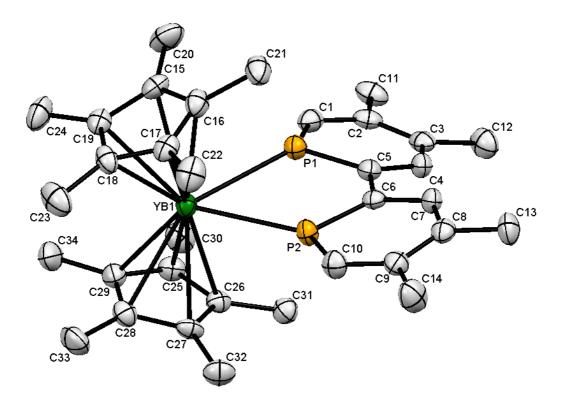



Figure S9: ORTEP and labeling scheme for 2. Thermal ellipsoids are at 50%.

References:

- 1. Neese, F. (2012) The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2,73-78.
- 2. Pantazis, D. A.; Neese, F. (2009) All-Electron Scalar Relativistic Basis Sets for the Lanthanides, J. Chem. Theory Comput., 5, 2229–2238.