Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Total Synthesis of Sceletium Alkaloids (±)-Joubertinamine, (±)-

Epijoubertinamine, (±)-Tortuosamine and Formal Synthesis of (±)-Mesembrine,

(±)-N-Formyltortuosamine

Viraj A. Bhosale*, Dattatraya U. Ukale and Suresh B. Waghmode*

Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly

Pune University of Pune), Ganeshkhind, Pune 411007, India

Table of contents

Description	Page
¹ H and ¹³ CNMR spectra of compound (±)-7b	2-3
¹ H and ¹³ CNMR spectra of compound(±)-8	4-5
¹ H and ¹³ CNMR spectra of compound(±)-9	6-7
¹ H and ¹³ CNMR spectra of compound (±)-10a	8-9
¹ H and ¹³ CNMR spectra of compound(±)- 10b	10-11
¹ H and ¹³ CNMR spectra of (±)-joubertinamine 1 a	12-13
¹ H and ¹³ CNMR spectra of (±)-epijoubertinamine 1b	14-15
¹ H and ¹³ CNMR spectra of compound(±)- 11	16-17
¹ H and ¹³ CNMR spectra of compound(±)-13	18-19
¹ H and ¹³ CNMR spectra of compound (±)-14	20-21
¹ H and ¹³ CNMR spectra of compound (±)15	22-23
¹ H and ¹³ CNMR spectra of compound (±)-16	24-25
¹ H and ¹³ CNMR spectra of (±)-tortuosamine- 3a	26-27
Fig. 4 Dihedral angles of diastereomers 10a ¹ obtained after the	28
optimization by DFT	
Fig. 1 DFT optimized structure of most stable 10a ¹	29
Table 1. Coordinates of 10b optimized structure by DFT	30

 ^1H NMR of (±)-7b (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-7b (126 MHz, CDC_{l3})

 ^1H NMR of (±)-8 (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-8 (126MHz, CDCl₃)

 ^1H NMR of (±)-9 (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-9 (126MHz, CDCl_3)

 ^{1}H NMR of (±)-10a (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-10a (126MHz, CDCl_3)

 ^{1}H NMR of (±)-10b (500 MHz, CDCl_3)

,*'*,0H

 ^1H NMR of (±)-1a (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-1a (126MHz, CDCl_3)

 ^{1}H NMR of (±)-1b (500 MHz, CDCl_3)

MR of (±)-1b (126MHz, CDCl₃)

 ^{1}H NMR Of (±)-11 (500 MHz, CDCl_3)

 $^{13}\text{CNMR}$ Of $(\pm)\text{-11}$ (126MHz, CDCl_3)

 ^{1}H NMR Of (±)-13 (500 MHz, CDCl_3)

 $^{13}\text{CNMR}$ Of (±)-13 (126MHz, CDCl_3)

_0

ÓΒz

14

21

 ^{1}H NMR Of (±)-15 (500 MHz, CDCl_3)

 $^{13}\text{CNMR}$ of (±)-15 (126MHz, CDCl_3)

 ^{1}H NMR of (±)-16 (500 MHz, CDCl_3)

 ^{13}C NMR of (±)-16 (126MHz, CDCl_3)

¹H NMR 0f (±)-tortuosamine3a (500 MHz, CDCl₃)

 $^{13}\text{CNMR}$ of (±)-tortuosamine 3a (126MHz, CDCl₃)

Fig. 1 Dihedral angles of conformer 10a¹ obtained after the optimization by DFT

Fig. 2 DFT optimized structure of **10a**^I

Atom	Х	Y	Z
С	-5.48353600	-0.17264200	-0.64366400
С	-5.37300500	-1.52874400	-0.36374100
С	-4.13180400	-2.02993200	0.07194100
C	-3.05412500	-1.15694200	0.24279000
C	-3 16777200	0 21320600	-0 02975800
C	-4 40000900	0.68824300	-0.48616500
С и	-6 43746800	0.00024500	
11	-0.43740800	1 56525200	-1.00309200
	-2.11303700	-1.30333300	0.37002000
H	-4.32009000	1.73734900	-0.72805200
0	-6.44//0200	-2.34810700	-0.604/5000
0	-4.0651/400	-3.3/635800	0.29122700
C	-2.80836800	-3.95512200	0.62247400
Н	-2.98737000	-5.02680600	0.69391600
Н	-2.06251100	-3.76188800	-0.15493900
Н	-2.43679500	-3.58612300	1.58479500
С	-7.03425300	-2.97840500	0.53927700
H	-6.32769100	-3.65258900	1.02723100
H	-7.38500000	-2.22498800	1.25389200
Н	-7.88612800	-3.54616700	0.16580400
С	-2.00207000	1.20876500	0.20150900
С	-1.95000200	2.17028200	-0.97617300
С	-2.28800500	1.98210000	1.53132100
С	-2.08325600	3.49392800	-0.89970400
Н	-1.79511700	1.70753500	-1.94782500
С	-1.76291800	3.42513500	1.56985300
Н	-3.37051700	2.01401900	1.68089200
Н	-1.88586800	1.40951900	2.37312400
C	-2.30204300	4.23407300	0.38931600
H	-2.04112600	4,10640200	-1.79528400
Н	-2 06034300	3 89310900	2 51568400
Ч	-0 67200400	3 46743400	1 52358000
и и	-3 38284900	1 10277100	1.52550000
C C	-0 65544900	1.40277100 0.42870500	0.26182800
U U	-0.65796500	-0.22607400	1 12070600
11		-0.23007400	1.12970000
п	-0.50005200	-0.20524400	-0.02047700
	0.61001700	1 00100700	1 24224600
H	0.65555200	1.00100/00	1.24334600
0	-1.65181200	5.50707500	0.20113100
H	-1.86007200	6.03570600	1.03840500
0	1.79734900	0.43269300	0.4/338500
Н	0./3201/00	1.92115900	-0.53004300
S	2.34256100	-0.3646/300	-0.85/12900
0	2.13399900	0.49776000	-2.01650800
0	1.79598400	-1.71619500	-0.84314800
С	4.07332400	-0.43521800	-0.45400300
С	4.57878200	-1.55599300	0.19300100
С	4.90332700	0.63778700	-0.79254400
С	5.93287400	-1.61534100	0.51518200
Н	3.92175100	-2.38224900	0.43283100
С	6.24747300	0.58099500	-0.47308600
Н	4.49605700	1.49626200	-1.31165400
С	6.77076800	-0.54433400	0.18386300
Н	6.31820600	-2.49394200	1.01349800
Н	6.91878100	1.39163000	-0.72756700
0	8.10001200	-0.50123900	0.44842900
С	8.71096700	-1.60997000	1.10284300
Н	8.28150600	-1.76973900	2.09692200
Н	8.61544100	-2.52353700	0.50754700
 H	9.76317200	-1.35035400	1,20083800
	· · · · · · · · · · · · · · · · · · ·	1.00000100	

Table 1. Coordinates of $\mathbf{10a^{I}}$ optimized structure by DFT