Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information

Organoselenium-Catalyzed Vicinal Dichlorination of Unsaturated

Phosphonates

Xianghua Zeng,*^a Chunhua Gong,^a Junyong Zhang^a and Jingli Xie*^{a,b}

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China. E-mail: xianghuazeng@mail.zjxu.edu.cn,

jlxie@mail.zjxu.edu.cn

^b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China

Table of Contents

1. Table S1 Screening of reaction conditions	······S2
2. Table S2 Studying the reaction mechanism	····· S3
3. The X-ray structures of 2s and 5	···· S4
4. ⁷⁷ Se NMR and HRMS spectrums	····· S5
5. Copies of ¹ H, ¹³ C and ³¹ P NMR Spectra for Compounds 2,	4 and
5	S6

integral area of α -H.

Cat.(5 % mol)								
SO ₂ Cl ₂								
Entry ^a	T(°C)	Catalyst	Yield (%)	d.r.(anti/syn) ^b				
1	25	-	95	1 :1				
2	-20	-	trace	-				
3	-20	PhSeSePh(C1)	89	6 :1				
4	-20	ⁿ Bu ₄ NCl	trace	-				
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & &$								
5	-20	ⁿ Bu ₄ NCl	trace	-				
^a Alkene (0.20 mmol), SO ₂ Cl ₂ (0.22 mol), catalyst (5 mol%), ClCH ₂ CH ₂ Cl (1.5 mL),								
5 min, isolated yield. ^b Determined by ¹ H NMR spectroscopy analysis of the integral								
area of α-H.								

Table S2	Studying	the	reaction	mechanism
----------	----------	-----	----------	-----------

Fig. S1 The X-ray structures of 2s (up) and 5 (bottom)

Fig. S2 The ⁷⁷Se NMR spectrum of reaction mixtures $(1a/SO_2Cl_2/PhSeSePh=1:1.1/0.05)$ at -20 °C for 5 min.

Fig. S3 The HRMS spectrum of reaction mixture ($1a/SO_2Cl_2/PhSeSePh=1:1.1/0.05$) at -20 °C for 5 min.

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **2a**

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 2d

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **2h**

00 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **2i**

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 2j

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 2m

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 20

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 2q

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **2r**

120 110 f1 (ppm) 150 140 130

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **2s**

Copies of ¹H, ¹³C and ³¹P NMR Spectra of 2t

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **4a**

Copies of ¹H, ¹³C and ³¹P NMR Spectra of **4b**

150 140 130 120 110 100 f1 (ppm)

