Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry

Synthesis of bio-based epoxy monomers from natural allyl- and vinyl phenols and the estimation of their affinity to the estrogen receptor α by molecular docking.

Erika Zago, Eric Dubreucq, Jérôme Lecomte, Pierre Villeneuve, Frédéric Fine, Hélène Fulcrand and Chahinez Aouf

Supporting Information

Table of contents

NMR spectra of product 2	S2-S3
NMR spectra of product 3	S4-S5
NMR spectra of product 4	S6-S7
NMR spectra of product 5	S8-S9
NMR spectra of product 6	S10-S11
NMR spectra of product 7	S12-S13
NMR spectra of product 8	S14-S15
NMR spectra of product 9	S16-S17
NMR spectra of product 10	S18-S19
NMR spectra of product 11	S20-S21
NMR spectra of product 12	S22-S23
Figure 1	S22-S23

Except product **3**, all NMR spectra were acquired at 25°C in DMSO- d_{6} . In the edited ¹H-¹³C HSQC spectra, the ¹JCH correlations arising from CH2 groups are phased down (in blue) and those arising from CH3 and CH groups are phased up (in red). In the ¹H-¹³C HMBC spectra, some intense ¹JCH correlations not totally cancelled appear as undecoupled ¹JCH signal.

1D ¹H spectrum of product **2**

HSQC spectrum of product 2

HMBC spectrum of product 2

1D $^1\!H$ spectrum of product ${\bm 3}$ in ${\rm CDCI}_3$

1D $^{\rm 13}C$ spectrum of product ${\bf 3}$ in CDCl_3

HMBC spectrum of product **3** in CDCl₃.

1D ¹H spectrum of product **4**

1D ¹³C spectrum of product **4**

HMBC spectrum of product 4

1D ¹³C spectrum of product **8**

HMBC spectrum of product 5

1D ¹H spectrum of product **6**

1D ¹³C spectrum of product **6**

HMBC spectrum of product 6

¹D ¹H spectrum of product **7**

1D ¹³C spectrum of product **7**

HMBC spectrum of product 7

1D ¹H spectrum of product 8

HSQC spectrum of product 8

HMBC spectrum of product 8

1D ¹H spectrum of product **9**

HSQC spectrum of product 9

HMBC spectrum of product 9

1D ¹³C spectrum of product **10**

HMBC spectrum of product 10

1D¹H spectrum of product **11**

HSQC spectrum of product 11

HMBC spectrum of product 11

1D ¹H spectrum of product **12**

HSQC spectrum of product 12

HMBC spectrum of product 12

Figure 1: ¹H NMR spectra of compounds 7, 8 and 9 showing the olefinic bonds signals.