Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

Salen-Based Enantiomeric Polymers for Enantioseletive Recognition

Manas Kumar Bera, ChanchalChakraborty and Sudip Malik*

Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata – 700032, India.

Email: psusm2@iacs.res.in

Table of contents	Page
1) Figure S1	S2
2) Figure S2	S2
3) Figure S3	S3
4) Figure S4	S3
5) Figure S5	S4
6) Figure S6	S4
7) Figure S7	S5
8) Figure S8	S5
9) Figure S9	S6
10) Figure S10	S6
11) Figure S11	S7
12) Figure S12	S7
13) Figure S13	S8
14) Figure S14	S10

NMR Study:

Fig. S1 ¹H-NMR of P2 polymer.

Fig. S2 ¹³C-NMR of P2 polymer.

Fig. S3 ¹H-NMR of P3 polymer.

Fig. S4 ¹³C-NMR of P3 polymer.

Fig. S5 MALDI-TOF spectrum of P2 in ditranol matrix bearing repetitive monomeric units (with their corresponding mass fragments M and m) up to a degree of polymerization (DP) of 9 ($M_W \sim 6400$).

Fig. S6 MALDI-TOF spectrum of P3 in ditranol matrix bearing repetitive monomeric units (with their corresponding mass fragments M and m) up to a degree of polymerization (DP) of 9 ($M_W \sim 6400$).

Fig. S7 TGA thermograms of P1and P2.

Fig. S8 Bar plot showing the fluorescence change of P1 and P2 in presence of 600 equiv. of (R)-and (S)-phenylglycinol.

Fig. S9 CD titration spectra of P1 (10 μ M in THF) and P2 (10 μ M in THF) with different molar ratio of (*S*)- and (*R*)-phenylglycinol in THF.

Fig. S10 Fluorescence spectra of P3 (10 μ M in THF) with and without 600 equiv. (*R*)- and (*S*)-phenylglycinol in THF. Excitation at 333 nm (slit 5/5).

Fig. S11 Fluorescence spectra of P4 (10 μ M in THF) with and without 600 equiv. (*R*)- and (*S*)-phenylglycinol in THF. Excitation at 340 nm (slit 5/5).

Fig. S12 Fluorescence spectra of P5 (10 μ M in THF) with and without 600 equiv. (*R*)- and (*S*)-phenylglycinol in THF. Excitation at 334 nm (slit 5/5).

Fig. S13 UV and CD titration spectra of P1 (10 μM in THF) and P2 (10 μM in THF) with different molar ratio of (*S*)- and (*R*)-phenylglycinol in THF.

Kuhn's factor (g):

CD effect is converted into the molar ellipticity using the relation (1).^{S1}

Where "c" is the concentration of the solution and "l" is the path length of the cuvette.

The anisotropy value or g-value was calculated using the below given relation (2).

	<i>R</i> -PG (equiv.)	S-PG (equiv.)	Calculated g
Polymer	0	0	1.30 x 10 ⁻³
P1	0	200	1.28 x 10 ⁻³
	0	300	1.17 x 10 ⁻³
	0	600	1.11 x 10 ⁻³
	600	0	1.26 x 10 ⁻³
	0	0	1.29 x 10 ⁻³
Polymer P2	200	0	1.09 x 10 ⁻³
12	300	0	1.05 x 10 ⁻³
	600	0	0.95 x 10 ⁻³
	0	600	1.19 x 10 ⁻³

Table ST1. Anisotropy values (g) of the polymers.

NMR Titration Procedure: First polymer was solubilized in CDCl₃ (10 mM with respect to monomeric unit) and analyte in CDCl₃ was added in different equivalent. Then, solution was shaken for 5 min followed by data acquisition. The OH proton gradually becomes broden upon analyte addition.

Fig. S14 NMR titration spectra of P2 with (*R*)-phenylglycinol in CDCl₃.

Binding constant:

Polymer	Binding constant with <i>R</i> -PG (M ⁻¹)	Binding constant with S-PG (M ⁻¹)
P1	3.7 x 10 ²	$10.9 \ge 10^3$
P2	8.8 x 10 ³	2.8 x 10 ²

Table ST2. Binding constant values of the polymers towards analytes.

Reference:

S1. C. Kulkarni, R. Manirathinam and S. J. George, Chem. - Eur. J., 2013, 19, 11270.