Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information for

p-Toluenesulfonic acid catalyzed single pot synthesis of tetracyclic 1,2-Dihydroquinolines: a metal free approach

Anil K. Hajare^a, Arun R. Jagdale^a, G. Gautham Shenoy^b and Neelima Sinha^a, *

^a Novel Drug Discovery & Development, Lupin Limited, 1st Floor, Genesis Square Building, Hinjewadi, Phase-2, Village - Man, Tal. Mulshi, Dist. - Pune, Maharashtra, India, 411057.
^b Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India, 576104.

Email: <u>neelimasinha@lupin.com</u>

Table Of Contents

(1) General Procedure and characterisation data	S2-S7
(2) Copies of ¹ H and ¹³ C NMR spectra	S8-S26

General:

Commercially available reagents and solvents were used without further purification. ¹H and ¹³C NMR experiments were performed on a Bruker AVANCE 400 MHz instrument, operating at 400 MHz for protons and 100 MHz for carbon nuclei. Data for ¹H NMR spectra are reported as follows: chemical shift (δ) in parts per million (multiplicity, coupling constant (Hz), integration). Data for ¹H NMR spectra are referenced to the center line of CDCl₃ (δ 7.26) as the internal standard. Data for ¹³C NMR spectra are referenced to the center line of CDCl₃ (δ 77.0). High-resolution mass spectra were obtained on a mass spectrometer in ESI or EI mode using a TOF mass analyzer. Reaction progress was monitored by thin layer chromatography (TLC, Merck, Inc., silica gel 60 F254), visualized under UV light, and plates were developed using iodine. Flash chromatography was performed using silica gel 100 – 200 mesh. Melting points were determined using Buchi apparatus and are uncorrected.

General Procedure for the *p*-TSA-Catalyzed Synthesis of 2,2,4-Trialkyl-1,2dihydroquinolines 8a–I (Method A). In a reaction vial containing a magnetic stir bar, was taken a mixture of aniline 6a–I (1.0 molar equiv), ketone 7 (5.0 molar equiv) and *p*-toluene sulfonic acid (0.2 molar equiv) in DMF (1 mL per mmol of substrate). Reaction vial was capped and stirred at the specified temperature (140°C) until complete disappearance of the starting material was observed by TLC. The reaction was transferred to a separatory funnel containing water and extracted with diethyl ether (3 × 30 mL). The combined organic extracts were dried over Na₂SO₄, and solvent was removed in vacuo. The residue was purified by flash column chromatography on silica gel (gradient elution with EtOAc and hexanes). General Procedure for the *p*-TSA-Catalyzed Synthesis of 2,2,4-Trialkyl-1,2dihydroquinolines 10a–g (Method B). In a reaction vial containing a magnetic stir bar, was taken a mixture of aniline (1.0 molar equiv), *p*-toluene sulfonic acid (0.2 molar equiv) in Ketone (2 mL per mmol of substrate) as a solvent. Reaction vial was capped and stirred at the specified temperature (100°C) until complete disappearance of starting material was observed by TLC. The solvent was evaporated under reduced pressure and residue was diluted with diethyl ether 50 mL., transferred to a separatory funnel containing water and extracted with diethyl ether (3 × 30 mL). The combined organic extracts were dried over Na₂SO₄, and solvent was removed in vacuo. The residue was purified by flash column chromatography on silica gel (gradient elution with EtOAc and hexanes).

1,2,3,5-Tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8a). Pale yellow solid; yield: 45%; mp: 83-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (td, *J* = 7.6, 1.2 Hz, 1H), 6.90 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.63 (td, *J* = 7.6, 1.2 Hz, 1H), 6.46 (dd, *J* = 7.6, 1.2 Hz, 1H), 3.93 (br s, 1H), 2.72–2.63 (m, 2H), 2.58–2.47 (m, 2H), 2.10–1.98 (m, 2H), 1.97–1.85 (m, 2H), 1.84 – 1.64 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 142.6, 138.7, 132.1, 127.5, 123.3, 120.4, 117.1, 112.2, 65.1, 39.6, 32.2, 31.2, 23.9, 22.4; HRMS (ESI) calcd. for C₁₆H₁₉N [M+H]⁺ *m/z* = 225.1517, found 225.1513.

8-Methyl-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8b) White solid; yield: 46%; mp: 82-84 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 6.64 (d, J = 8.0, 1H), 6.55 (s, 1H), 6.41 (d, J = 8.0 Hz, 1H), 5.61 (br s, 1H), 2.55–2.40 (m, 4H), 2.11 (s, 3H), 1.92 (p, J = 7.2 Hz, 2H), 1.82–1.70 (m, 4H), 1.65–1.57 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 140.35 , 139.20 , 132.19 , 127.89 , 126.28 , 123.92 , 112.33 , 77.23 , 65.05 , 39.43 , 32.23 , 31.22 , 23.96 , 22.47 , 20.72; HRMS (ESI) calcd. for C₁₇H₂₁N [M+H]⁺ m/z = 239.1674, found 239.1671.

8-Chloro-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8c) White solid; yield: 21%; mp: 106-108 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 6.82 (dd, J = 8.4, 2.4 Hz, 1H), 6.69 (d, J = 2.4 Hz, 1H), 6.49 (d, J = 8.4 Hz, 1H), 6.06 (br s, 1H), 2.50–2.42 (m, 4H), 1.92 (quint, J = 7.6 Hz, 2H), 1.87–1.70 (m, 4H), 1.67–1.48 (m, 4H); ¹³C NMR (100MHz, DMSO- d_6) δ 142.3, 139.9, 130.1, 126.7, 122.0, 120.3, 118.3, 112.8, 64.2, 40.4, 31.8, 30.5, 23.8, 21.7; HRMS (ESI) calcd. for C₁₆H₁₈ClN [M+H]⁺ m/z = 259.1128, found 259.1128.

7-Methoxy-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8e) White solid; yield: 76%; mp: 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, J = 8.0 Hz, 1H), 6.19 (dd, J = 8.0, 2.4 Hz, 1H), 6.05 (d, J = 2.4 Hz, 1H), 3.97 (br s, 1H), 3.76 (s, 3H), 2.69–2.59 (m, 2H), 2.55–2.45 (m, 2H), 2.05–1.97 (m, 2H), 1.92–1.84 (m, 2H), 1.80–1.64 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.6, 143.9, 135.9, 131.7, 124.1, 114.2, 102.0, 98.3, 65.1, 55.1, 39.8, 32.0, 31.2, 23.9, 22.4; HRMS (ESI) calcd. for C₁₇H₂₁NO [M+H]⁺ m/z = 255.1623, found 255.1621.

7-Methyl-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8f) White solid; yield: 73%; mp: 77-79 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.60 (d, *J* = 7.6 Hz, 1H), 6.32 (s, 1H), 6.22 (d, *J* = 7.6Hz, 1H), 5.73 (br s, 1H), 2.50–2.41 (m, 4H), 2.11 (s, 3H), 1.91 (quint, *J* = 7.6 Hz, 2H), 1.84–1.70 (m, 4H), 1.65–1.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 137.6, 137.3, 132.0, 123.1, 117.9, 112.8, 65.1, 39.7, 32.1, 31.2, 23.9, 22.4, 21.5; HRMS (ESI) calcd. for C₁₇H₂₁N [M+H]⁺*m/z* = 239.1674, found 239.1669.

7-Chloro-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8g) White solid; yield: 30%; mp: 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, J = 8.0 Hz, 1H), 6.56 (dd, J = 8.0, 2.0 Hz, 1H), 6.43 (d, J = 2.0 Hz, 1H), 3.97 (br s, 1H), 2.68–2.59 (m, 2H), 2.56–2.47 (m, 2H), 2.03 (quint, J = 7.6 Hz, 2H), 1.96–1.85 (m, 2H), 1.84–1.64 (m, 6H); ¹³C NMR (100

MHz, CDCl₃) δ 143.6, 138.9, 132.5, 131.4, 124.1, 118.8, 116.8, 111.7, 65.2, 40.1, 32.2, 31.1, 23.9, 22.3; HRMS (ESI) calcd. for C₁₆H₁₈ClN [M+H]⁺ *m*/*z* = 259.1128, found 259.1123.

N-(1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentan]-7-yl)acetamide (8h) Yellow solid; yield: 76%; mp 236–238 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.57 (br s, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.47 (dd, J = 8.0, 2.0 Hz, 1H), 5.94 (br s, 1H), 2.50–2.39 (m, 4H), 1.99 (s, 3H), 1.90 (quint, J = 7.2 Hz, 2H), 1.83–1.74 (m, 4H), 1.64–1.49 (m, 4H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 168.2, 144.2, 139.2, 136.9, 131.0, 123.1, 115.1, 106.7, 103.0, 64.6, 40.8, 32.1, 31.0, 24.5, 24.4, 22.3; HRMS (ESI) calcd. for C₁₈H₂₂N₂O [M+H]⁺ m/z =282.1732, found 282.1728.

6-Methoxy-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (8i) Pale yellow solid; yield: 20%; mp 95-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.69–6.54 (m, 3H), 4.47 (br s, 1H), 3.85 (s, 3H), 2.71–2.64 (m, 2H), 2.57– 2.50 (m, 2H), 2.03 (quint, J = 7.2 Hz, 2H), 1.94–1.86 (m, 2H), 1.83–1.75 (m, 4H), 1.72–1.65 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 145.2, 138.6, 132.1, 132.1, 120.3, 116.1, 115.7, 109.0, 64.6, 55.6, 40.0, 32.2, 31.4, 23.9, 22.4; HRMS (ESI) calcd. for C₁₇H₂₁NO [M+H]⁺ m/z = 255.1623, found 255.1625.

6-Methyl-1,2,3,5-tetrahydrospiro[cyclopenta[c]quinoline-4,1'-cyclopentane] (**8j**) White solid; yield: 12%; mp 69-70 °C; ¹H-NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.58 (t, J = 7.6 Hz, 1H), 3.83 (br s, 1H), 2.73–2.65 (m, 2H), 2.59–2.50 (m, 2H), 2.12 (s, 3H), 2.04 (quint, J = 7.2Hz, 2H), 1.97–1.87 (m, 2H), 1.85– 1.69 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 140.5, 138.2, 132.5, 128.9, 121.4, 119.7, 119.0, 116.4, 65.0, 40.0, 32.2, 31.4, 23.8, 22.5, 17.0; HRMS (ESI) calcd. for C₁₇H₂₁N [M+H]⁺ m/z = 239.1674, found 239.1669.

7',8',9',10'-tetrahydro-5'H-spiro[cyclohexane-1,6'-phenanthridine] (8k) Oil; yield: 40%; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (dd, J = 7.6, 1.2 Hz, 1H), 7.00 (td, J = 7.6, 1.2 Hz, 1H), 6.71 (td, J = 7.6, 1.2 Hz, 1H), 6.59 (dd, J = 7.6, 1.2 Hz, 1H), 4.43 (br s, 1H), 2.43–2.37 (m, 2H), 2.17– 2.11 (m, 2H), 1.82–1.66 (m, 8H), 1.65 –1.59 (m, 2H), 1.56–1.41 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 142.0, 135.9, 127.1, 125.2, 124.3, 122.1, 117.9, 113.6, 77.1, 54.6, 32.4, 25.4, 25.2, 24.9, 23.1, 22.4, 21.2; HRMS (ESI) calcd. for C₁₈H₂₃N [M+H]⁺ m/z = 253.1830, found 253.1831.

3'-methoxy-7',8',9',10'-tetrahydro-5'H-spiro[cyclohexane-1,6'-phenanthridine] (81) White solid; yield: 63%; mp 102-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 8.4 Hz, 1H), 6.27 (dd, J = 8.4, 2.4 Hz, 1H), 6.18 (d, J = 2.4 Hz, 1H), 4.42 (br s, 1H), 3.79 (s, 3H), 2.41–2.33 (m, 2H), 2.16–2.09 (m, 2H), 1.80–1.41 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 143.4, 133.2, 124.9, 123.1, 118.0, 102.9, 99.4, 55.1, 54.7, 32.5, 25.4, 25.3, 24.7, 23.2, 22.5, 21.1; HRMS (ESI) calcd. for C₁₉H₂₅NO [M+H]⁺ m/z = 283.1936, found 283.1934.

2,2,4-Trimethyl-1,2-dihydroquinoline (10a) Oil; yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, J = 7.6, 1.2 Hz, 1H), 6.99 (td, J = 7.6, 1.2 Hz, 1H), 6.64 (td, J = 7.6, 1.2 Hz, 1H), 6.45 (dd, J = 7.6, 1.2 Hz, 1H), 5.33 (q, J = 1.2 Hz, 1H), 3.74 (br s, 1H), 1.99 (d, J = 1.2 Hz, 3H), 1.28 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.2, 128.6, 128.39, 128.36, 123.6, 121.6, 117.2, 113.0, 51.8, 31.0, 18.6; HRMS (ESI) calcd. for C₁₂H₁₅N [M+H]⁺ m/z = 173.1204, found 173.1208.

7-Methoxy-2,2,4-trimethyl-1,2-dihydroquinoline (10b) White solid; yield: 56%; mp 68–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.4 Hz, 1H), 6.22 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.06 (d, *J* = 2.4 Hz, 1H), 5.20 (s, 1H), 3.78 (br s, 1H), 3.75 (s, 3H), 1.96 (s, 3H), 1.27 (s, 6H); ¹³C-

NMR (100 MHz, CDCl₃) δ 160.2, 144.7, 130.6, 128.2, 126.2, 124.7, 115.3, 102.3, 98.6, 55.1, 51.9, 31.1, 18.7; HRMS (ESI) calcd. for C₁₃H₁₇NO [M+H]⁺ m/z = 203.1310, found 203.1306.

2,2,4,7-tetramethyl-1,2-dihydroquinoline (10c) Oil; yield: 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 7.6 Hz, 1H), 6.51 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.33 (d, *J* = 1.6 Hz, 1H), 5.29 (d, *J* = 1.6 Hz, 1H), 3.69 (br s, 1H), 2.27 (s, 3H), 2.01 (d, *J* = 1.6 Hz, 3H), 1.31 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.23, 138.32, 128.53, 127.46, 123.60, 119.18, 118.10, 113.68, 51.86, 31.04, 21.45, 18.68; HRMS (ESI) calcd. for C₁₃H₁₇N [M+H]⁺ *m/z* = 187.1361, found 187.1361.

7-chloro-2,2,4-trimethyl-1,2-dihydroquinoline (10d) Oil; yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, *J* = 8.0 Hz, 1H), 6.61 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.46 (d, *J* = 2.0 Hz, 1H), 5.33 (d, *J* = 1.6 Hz, 1H), 3.92 (s, 1H), 1.98 (s, 3H), 1.30 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 144.22, 133.54, 128.44, 127.84, 124.67, 120.06, 116.95, 112.47, 52.15, 31.10, 18.57; HRMS (ESI) calcd. for C12H14CIN [M+H]⁺ *m*/*z* = 207.0815, found 207.0817.

2,4-diethyl-2-methyl-1,2-dihydroquinoline (10e) Oil; yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, J = 7.6, 1.2 Hz, 1H), 7.00 (td, J = 7.6, 1.2 Hz, 1H), 6.64 (td, J = 7.6, 1.2 Hz, 1H), 6.47 (dd, J = 8.0, 1.2 Hz, 1H), 5.24 (d, J = 1.2 Hz, 1H), 3.63 (br s, 1H), 2.43 (q, J = 7.2 Hz, 2H), 1.61 – 1.48 (m, 2H), 1.27 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.96, 134.80, 128.20, 125.11, 123.22, 120.60, 116.70, 112.83, 54.61, 36.51, 29.45, 24.62, 12.94, 8.59; HRMS (ESI) calcd. for C₁₄H₁₉N [M+H]⁺ m/z = 201.1517, found 201.1518.

2,4-Diethyl-7-methoxy-2-methyl-1,2-dihydroquinoline (10f) White solid; yield: 60%; mp 60–61 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.4 Hz, 1H), 6.20 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.06 (d, *J* = 2.4 Hz, 1H), 5.12 (t, *J* = 1.6 Hz, 1H), 3.78 (br s, 1H), 3.77 (s, 3H), 2.39 (q, *J* = 7.2

Hz, 2H), 1.58–1.48 (m, 2H), 1.25 (s, 3H), 1.18 (t, J = 7.6 Hz, 3H), 0.93 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.0, 145.4, 134.5, 124.2, 122.6, 114.3, 101.8, 98.4, 55.0, 54.8, 36.5, 29.5, 24.7, 12.9, 8.5; HRMS (ESI) calcd. for C₁₅H₂₁NO [M+H]⁺ m/z = 231.1623, found 231.1622.

2,4-diethyl-2,7-dimethyl-1,2-dihydroquinoline (10g) Oil; yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 7.6 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H), 6.33 (s, 1H), 5.18 (s, 1H), 3.87 (br s, 1H), 2.41 (q, *J* = 7.6 Hz, 2H), 2.24 (s, 3H), 1.60 – 1.47 (m, 2H), 1.25 (s, 3H), 1.18 (t, *J* = 7.6 Hz, 3H), 0.94 (t, *J* = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.94, 138.11, 134.75, 124.13, 123.16, 118.12, 117.56, 113.46, 54.61, 36.50, 29.47, 24.67, 21.37, 13.00, 8.61; HRMS (ESI) calcd. for C₁₄H₁₉N [M+H]⁺ *m/z* = 215.1674, found 215.1674.

¹H and ¹³C spectra of compound 8a

¹H and ¹³C spectra of compound 8b

¹H and ¹³C spectra of compound 8h

¹H and ¹³C spectra of compound 8j

¹H and ¹³C spectra of compound 10a

¹H and ¹³C spectra of compound 10b

¹H and ¹³C spectra of compound 10e

¹H and ¹³C spectra of compound 10f

¹H and ¹³C spectra of compound 10g