Electronic Supplementary Information for New Journal of Chemistry

Novel Approach for the Synthesis of Imidazo and Triazolopyridines from Dithioesters

Ajjahalli. B. Ramesha, ${ }^{\text {a }}$ Nagarakere. C. Sandhya, ${ }^{\text {b }}$ Chottanahalli. S. Pavan Kumar, ${ }^{\text {a }}$ Mahanthawamy Hiremath, ${ }^{a}$ Kempegowda Mantelingua* and Kanchugarakoppal. S. Rangappa, ${ }^{\text {a* }}$

Contents Page

1. General information S2
2. General procedure for the synthesis of dithioesters and

S2- S3 oxadiazoles
3. ${ }^{1} \mathrm{H}$ NMR and 13 C NMR of compounds $\mathbf{3 a - 3 o}$

S4-S37
4. ${ }^{1} \mathrm{H}$ NMR and 13 C NMR of compounds 5a-5e

S38-S47

General Information: 2-methylaminopyridine, 2-hydrazinylpyridine and T3P were purchased from commercial sources and used as received. Reagent grade THF was purchased from SigmaAldrich and distilled over sodium. Purification of reaction products was carried out by flash column chromatography using Sorbent Technologies Standard Grade silica gel ($60 \AA, 230-400$ mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60 F254 plates. Visualization was accomplished with UV light, potassium permanganate and DragendorffMunier stains followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{HNMR}$) were recorded on Agilent- 400 MHz and are reported in ppm using CDCl_{3} amd DMSOd^{6} as the internal standard. Data are reported as app $=$ apparent, $s=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, comp = complex, $\mathrm{br}=$ broad; and coupling constant(s) in Hz. Protondecoupled carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}-\mathrm{NMR}$) were recorded on a Agilent-400 MHz and are reported in ppm using chloroform as the internal standard (77.0 ppm). Mass spectra were recorded on Agilent mass spectrum

General Procedure for the oxidative desulfurative cyclization of dithioesters: To a solution of dithioester ($1.0 \mathrm{eq}, 1.0 \mathrm{mmol}$) in THF (2 mL) was added amine or hydrazine ($1.1 \mathrm{eq}, 1.1 \mathrm{mmol}$) at room temperature, the resulting mixture was stirred for 45 min . monitored the dithioester could no longer be detected. To the above mixture was added T3P (1.0 equiv, 50\% solution in EtOAc) and DMSO (2.0 eq). The mixture was stirred at room temperature for 1.5 h and progress was monitored by TLC. The reaction mixture was diluted with EtOAc neutralized with saturated sodium bicarbonate solution, separated organic layer; the aqueous layer was extracted with EtOAc (25 mL X 3). The combined organic layers were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure; the residue was purified by silica gel chromatography.

General Procedure for the synthesis of dithioesters (phenyl dithioester) : Magnesium (1.2 eq, 1.2 mmol) was added to THF (2 ml) and the solution was warmed till the brisk effervescence observed. After the activation of magnesium, the solution was ice cooled and solution of bromo benzene ($1.0 \mathrm{eq}, 1.0 \mathrm{mmol}$) was added drop wise. Then the solution was stirred for 20 min at room temperature and then carbon disulphide ($1.0 \mathrm{eq}, 1.0 \mathrm{mmol}$) was added drop wise (the solution turns to orange color) under ice cooled condition. The reaction mixture was stirred for 2 h at room temperature. Methyl iodide ($1.0 \mathrm{eq}, 1.0 \mathrm{mmol}$) was added drop wise under ice cooled condition and the mixture was stirred at room temperature for 3 h and progress was monitored by TLC. Ice cold water was added slowly and then reaction mixture was diluted with hexane; the aqueous layer
was extracted with hexane (25 mL X 3). The combined organic layers were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure; the residue was purified by silica gel chromatography.
${ }^{1} \mathrm{H}$ NMR of 3a

${ }^{13} \mathrm{C}$ NMR of 3 a

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}$

${ }^{13} \mathbf{C}$ NMR of 3b

${ }^{13} \mathrm{C}$ NMR of 3 c

${ }^{13} \mathrm{C}$ NMR of 3d

${ }^{1} \mathrm{H}$ NMR of 3 e

${ }^{13}$ C NMR of 3e

${ }^{1} \mathrm{H}$ NMR of $3 f$

${ }^{13}$ C NMR of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR of 3 h

${ }^{13} \mathrm{C}$ NMR of 3 h

${ }^{13} \mathbf{C}$ NMR of $3 \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR of 3 k

${ }^{13} \mathrm{C}$ NMR of 3 i

${ }^{13} \mathrm{C}$ NMR of 31

${ }^{1} \mathrm{H}$ NMR of 3m

${ }^{13}$ C NMR of 3m

${ }^{1} \mathrm{H}$ NMR of $3 n$

${ }^{13}$ C NMR of 3n

${ }^{13} \mathrm{C}$ NMR of 30

| 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR of $3 p$

${ }^{13}$ C NMR of 3p

 $\begin{array}{llllllllllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR of $3 q$

${ }^{1} \mathrm{H}$ NMR of 5 a

${ }^{13} \mathrm{C}$ NMR of 5 a

200	180	160	14	120	100					
	180	160	14	120	100	80	60	40	20	ppm

${ }^{13} \mathrm{C}$ NMR of 5 b

${ }^{1} \mathrm{H}$ NMR of 5 c

${ }^{13} \mathrm{C}$ NMR of 5 c

${ }^{1} \mathrm{H}$ NMR of 5 d

200
180
160
140
120
100
80
60
40
20
ppm

${ }^{1} \mathrm{H}$ NMR of 5 e

${ }^{13} \mathrm{C}$ NMR of 5 e

 $\begin{array}{llllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & \text { ppm }\end{array}$

