Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information for: Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins

Nuonuo Zhang, Jianbing Jiang, Mengran Liu, Masahiko Taniguchi, Amit Kumar Mandal, Rosemary B. Evans-Storms, J. Bruce Pitner, David F. Bocian, Dewey Holten and Jonathan S. Lindsey

Table of Contents

Section	Торіс	Page
1.	Scale-Up Procedures	S1–S3
2.	Exploratory Syntheses Towards PEGylated Bacteriochlorins	S4–S12
3.	Additional Photophysics Studies	S12–S13
4.	Flow Cytometry Data	S14
5.	References	S14
6.	Spectra	S14–S72

1. Scale-Up Procedures

Several bacteriochlorins were prepared at somewhat larger scale than in the procedures described in the body of the paper. Bacteriochlorin **B2** was prepared in a larger scale (~40 mg) starting from bacteriochlorin precursor 10. The Suzuki coupling reaction of bacteriochlorin 1 (270 mg) with 9 afforded 10 (465 mg, 90% yield, to be compared to 85% yield for the smaller scale synthesis). A portion of the sample of bacteriochlorin 10 (200 mg) was consumed for the reactions of 15-bromination and 15-acylation (Suzuki coupling) to afford bacteriochlorin 13 (60 mg, 25% yield; to be compared to a 31% yield for the smaller scale synthesis). The subsequent deprotection (97%) and PEGylation (77%) were conducted to afford the target bacteriochlorin **B2** (~40 mg). **B4** was also prepared in a larger scale (20 mg). Summaries and comparisons of the smaller- and larger-scale synthesis for **B2** and **B4** are listed in Table S1.

Cmpd B2 B4	Smaller	scale		Larger scale			
	Purification ^a	Time	Total yield	Purification ^a	Time	Total yield	
B2	Column chromatography (2 steps), solvent wash (2 steps)	5 d	22% ^b	Column chromatography (2 steps), solvent wash (2 steps)	7 d	17% ^b	
B4	Column chromatography (3 steps), solvent wash (2 steps)	6 d	3% ^c	Column chromatography (3 steps), solvent wash (2 steps)	8 d	6% ^c	

^{*a*}The aqueous/organic wash is not included. ^{*b*}Calculated from four continuous reaction steps for the conversion of 10 to B2. ^{*c*}Calculated from four continuous reaction steps for the conversion of 15 to B4.

Synthesis protocols:

Bacteriochlorin **B2.** A mixture of **14** (25.0 mg, 30.5 μ mol), Cs₂CO₃ (200 mg, 613 μ mol) and **PEG₄-NHS** (410 mg, 1.23 mmol) in DMF (375 μ L) was stirred under argon for 2.5 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (2.5 mL) and stirred for 4 h. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (40.0 mg, 77% yield).

Bacteriochlorin **B4.** A solution of **18** (17.0 mg, 13.0 µmol) in CH₂Cl₂ (2.80 mL) was stirred under argon for 2 min, followed by addition of TFA (0.280 mL). After 1 h, the reaction mixture was diluted with CHCl₃ (~3 mL) and dried under vacuum to thoroughly remove the CH₂Cl₂ and TFA. This procedure (CHCl₃ addition – solvent removal) was repeated twice, whereupon the mixture was dried under vacuum. Tributylamine (20 µL) was added to the solid residue, and the resulting suspension was sonicated for 3 min. A mixture of THF and hexanes (1:2) was then added, and the resulting suspension was sonicated (5 min) and centrifuged. The supernatant was discarded to afford a greenish solid. A mixture of the resulting bacteriochlorin (11.8 mg, 13.0 µmol), Cs₂CO₃ (20.0 mg, 64.7 µmol, 5 equiv) and **PEG₄-NHS** (134 mg, 0.410 mmol, 34 equiv) in DMF (2.8 mL) was stirred under argon for 2 h. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (20.0 mg, 86% yield).

Bacteriochlorin **13.** A solution of **10** (200 mg, 187 µmol) in THF (375 mL) was treated with NBS (40.0 mg, 224 µmol) in THF (2.25 mL) at room temperature for 1.5 h. The reaction mixture was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was dried (Na₂SO₄) and concentrated to afford a red solid, which was transferred to a Schlenk flask. Samples of **12** (154 mg, 0.463 mmol), Pd(PPh₃)₄ (43.6 mg, 37.7 µmol), and Cs₂CO₃ (187 mg, 0.572 mmol) were placed in the Schlenk flask, and the mixture was dried and deaerated under high vacuum for 30 min. Toluene/DMF [9.5 mL (2:1), deaerated by bubbling with argon for 30 min] was added to the Schlenk flask under argon, and the resulting mixture was deaerated by three freeze-pump-thaw cycles. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (60.0 mg, 25% yield).

Bacteriochlorin 14. A solution of 13 (50.0 mg, 39.2 μ mol) in CH₂Cl₂ (2.35 mL) was stirred under argon for 2 min followed by the addition of TFA (1.51 mL). After 1 h, the reaction mixture was diluted with CHCl₃ and dried under an argon flow. Tributylamine (642 μ L, 2.70 mol) was added to the solid residue, and the mixture was sonicated for 3 min. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (31.0 mg, 97% yield).

Bacteriochlorin 15. A mixture of bacteriochlorin 2 (298 mg, 443 μ mol), 9 (450 mg, 964 μ mol), Pd(PPh₃)₄ (306 mg, 265 μ mol), Cs₂CO₃ (432 mg, 1.33 mmol) and toluene/DMF [45 mL

(2:1), deaerated by bubbling with argon for 1 h] was added to a Schlenk flask and deaerated by three freeze-pump-thaw cycles. The remaining reaction protocol, and purification procedure and characterization data (ESI-MS were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (326 mg, 62% yield).

Bacteriochlorin 16. A solution of 15 (326 mg, 275 μ mol) in THF (63.0 mL) was treated with NBS (54.0 mg, 303 μ mol) in THF (3.00 mL) at room temperature under argon for 40 min. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (250 mg, 72% yield).

Bacteriochlorin **18.** A mixture of **16** (250 mg, 198 μ mol), Pd₂(dba)₃ (75.0 mg, 90.0 μ mol, 0.45 equiv) and P(*o*-tol)₃ (150 mg, 475 μ mol, 2.4 equiv) was dried under high vacuum in a Schlenk flask for 1 h. Toluene/DMF [19.5 mL (2:1), deaerated by bubbling with argon for 30 min] was added to the Schlenk flask under argon, and the resulting mixture was deaerated by three freeze-pump-thaw cycles. 6-Heptynoic acid (**17**, 250 μ L, 2.00 mmol, 10 equiv) was added after the second freeze-pump-thaw cycle. The remaining reaction protocol, purification procedure and characterization data (ESI-MS data were not obtained) were essentially identical with those in the body of the paper to afford the title bacteriochlorin (45.0 mg, 17% yield). A mixture of debrominated bacteriochlorin **15** and starting bacteriochlorin **16** (1:1 determined by ¹H NMR spectroscopy, ~130 mg) was recovered after chromatography.

2. Exploratory Syntheses Towards PEGylated Bacteriochlorins

Several other target bacteriochlorins were also designed with expectation to tune the wavelength or to explore complementary synthetic methodologies. Three target compounds shown in Chart S1 were attempted. None of these target compounds was obtained due to synthetic difficulties encountered with the intermediates. Here, the "S" terminology is included to denote that these compounds are part of the Supplementary Information section and do not appear in the body of the paper.

Chart S1. Attempted target bacteriochlorins.

Bacteriochlorin **B-S1** was designed with expectation of a Q_y absorption band at ~730 nm. The Suzuki coupling reaction of bacteriochlorin **1** with compound **S1**¹¹ failed to afford the tetraformylbacteriochlorin **B-S4** (Scheme S1). This was a surprise, since a similar Suzuki coupling reaction with 15-bromo-2,12-bis(4-methylphenyl)bacteriochlorin using the same coupling partner successfully afforded the corresponding 15-(3,5-diformyl)-2,12-bis (4-methylphenyl)bacteriochlorin in 81% yield.¹¹ This synthesis failure may stem from a difference in reactivity of the bacteriochlorin *meso* (15-) and β (3- and 13-) positions.¹¹

Scheme S1. Attempted synthesis of a PEGylated bacteriochlorin.

Previous studies revealed that attachment of 3,13-diethynyl groups shifted the $O_{\rm v}$ absorption band of the bacteriochlorin to 749 nm, to be compared with 729 nm for the parent 3,13-dibromobacteriochlorin.³⁷ In a separate study,¹¹ a bathochromic shift of 18 nm was achieved bv incorporating an ethynyl group at the 15-position of а 2,12-di-*p*-tolyl-5-methoxybacteriochlorin. Accordingly, incorporation of three ethynyl groups (2-, 12-, and 15-positions) with a 3,13-dicarboethoxybacteriochlorin was expected to cause a bathochomic shift of the Q_y band from 749 nm to ~795 nm.

Treatment of Boc-protected 3,5-diamino-1-bromobenzene **S2** with trimethylsilylacetylene (**S3**) under Pd-catalysis conditions afforded **S4** in 63% yield (Scheme S2).^{S1} The resulting compound **S4** was subjected to trimethylsilyl (TMS) group removal by potassium carbonate in a mixed solvent of methanol and dichloromethane^{S2} to give the Sonogashira coupling partner **S5** in 67% yield. The use of triisopropylsilylacetylene (**S6**) instead of trimethylsilylacetylene (**S3**) failed to afford the desired product **S7** under various conditions. All conditions examined for both routes are summarized in Table S2.

Scheme S2. Attempted synthesis of a PEGylated bacteriochlorin.

Entry	Reaction conditions ^{<i>a,b</i>}	Observed	Detected by
1	Pyridine, Pd(PPh ₃) ₂ Cl ₂ (0.01 eq), S6 (2 eq), CuI (0.2 eq), 80 °C, 16 h	unknown	¹ H NMR
2	THF/TEA (3:2), Pd(PPh ₃) ₂ Cl ₂ (0.05 eq), S6 (3 eq), CuI (0.4 eq), 80 °C, 16 h	unknown	¹ H NMR
3	Pyridine, Pd(PPh ₃) ₂ Cl ₂ (0.05 eq), S3 (3 eq), CuI (0.4 eq), 80 °C, 36 h	unknown	¹ H NMR
4	THF/ <i>i</i> -Pr ₃ N (3:2), Pd(PPh ₃) ₂ Cl ₂ (0.05 eq), S3 (3 eq), CuI (0.4 eq), 80 °C, 36 h	unknown	¹ H NMR
5	DMF/TEA (3:2), Pd(PPh ₃) ₂ Cl ₂ (0.05 eq), S3 (3 eq), CuI (0.4 eq), 80 °C, 24 h	unknown	¹ H NMR
6	THF/TEA (2:1), Pd(PPh ₃) ₄ (0.03 eq), S3 (3 eq), ZnBr ₂ (0.67 eq), 60 °C, 2 d	product S4	¹ H NMR, ¹³ C NMR, ESI-MS

Table S2. Reaction conditions examined for the Sonogashira reaction.

^{*a*}Concentrations of **S2** are 0.40 M for entry 1, 0.24 M for entries 2–5, and 0.30 M for entry 6. ^{*b*}All equivalents in the brackets are relative to compound **S2**.

Sonogashira coupling reaction of bacteriochlorin 2 with coupling partner S5 under copper-free Sonogashira conditions^{11,35} gave Boc-protected bacteriochlorin **B-S5** in 41% yield (Scheme S2). Treatment of bacteriochlorin **B-S5** with NBS, however, failed to give the 15-brominated bacteriochlorin under various neutral and basic conditions, with the starting bacteriochlorin **B-S5** unreacted or decomposed (Table S3).

Entry	Reaction condition ^a	Observation ^b
1	NBS (1.0 eq), THF, 40 min, rt	\mathbf{SM}^{c}
2	NBS (2.0 eq), THF, 2 h, rt	SM^c
3	NBS (3.0 eq), THF, 20 min, rt	SM^{c}
4	NBS (6.0 eq), THF, 10 min, rt	decomposed
5	NBS (1.0 eq), CH ₃ CN, 16 h, rt	SM^c
6	NBS (1.1 eq), CH ₂ Cl ₂ , pyridine (150 eq), 50 min, rt	SM^c

 Table S3.
 Reaction conditions for 15-bromination.

^{*a*}The concentration of **B-S5** in THF was 4 mM for entries 1–5 and 5.5 mM for entry 6. A stock solution of NBS (0.1 M in THF) was used for all entries. ^{*b*}Confirmed by MALDI-MS and absorption spectroscopy. ^{*c*}Starting bacteriochlorin **B-S5** was detected.

Bacteriochlorin **B-S3** bearing an extended π -electron conjugation was designed to tune the wavelength to ~800 nm. The PEG unit was incorporated at the final step via Schiff's base formation. This route entailed the preparation of a PEGylated aminooxy compound **S11** as described below (Scheme S3): (i) EDC-mediated coupling reaction of a Boc-protected aminooxy carboxylic acid (S8) with PEG₈-amine S9 to afford compound S10 in 71% yield, and (ii) cleavage of the Boc group to give S11 in 69% yield. Both S10 and S11 were used directly for the next step without column chromatography purification.

Scheme S3. Synthesis of a PEGylated bacteriochlorin.

A model study of the reactivity of the 3-oxopropenyl substituent toward the aminooxy group was examined with known bacteriochlorin $B-S6^{S3}$ and S11. The resulting mixture consisted of the starting bacteriochlorin B-S6, mono-oxime (structure not shown) and di-oxime product B-S7 (Scheme S3 and Table S4). Variation of the reaction conditions did not improve

the product yield (Table S4). Silica column chromatography was not effective in separating the three components, either. A second problem for this route was the unexpected Pd-insertion during the Suzuki coupling reaction at the bacteriochlorin 15-position for the introduction of a bioconjugatable tether. The Pd-metalated bacteriochlorin is undesirable because of a short-lived fluorescence lifetime, precluding any further photophysical studies or applications. Treatment with 80% TFA in dichloromethane was not successful in removing the chelated palladium. By contrast with the Pd-metalated bacteriochlorin, zinc bacteriochlorins typically exhibit satisfactory fluorescence properties. Accordingly, the bacteriochlorin was subjected to zinc metalation, following by Suzuki coupling at the 15-position; however, the bacteriochlorin decomposed during the Suzuki coupling step as determined by MALDI-MS and absorption spectroscopy. In short, derivatization of the 3-oxopropenyl substituent was not achieved.

Entry	Catalyst	Solvent ^c	Temp.	Results ^d
1	aniline (100 eq)	$CH_2Cl_2/DMSO/NH_4OAc = 2:1:0.2$	rt	1:1:1
2	aniline (500 eq)	CH ₂ Cl ₂	rt to 60 °C	1:2:3
3	N/A	$CH_2Cl_2/C_2H_5OH = 1:1$	80 °C	1:1:1
4^b	N/A	$NH_4OAc/CH_2Cl_2 = 1:1$	rt	1:2:3

 Table S4.
 Reaction conditions for oxime formation.^a

^{*a*}10 mM of bacteriochlorin **B-S6** and ~20 equiv of **S11**. ^{*b*}Starting bacteriochlorin is the product mixture from entry 2. ^{*c*}NH₄OAc buffer: pH 4.5, 100 mM. ^{*d*}**B-S6**/mono-oxime/**B-S7**.

Bacteriochlorin **B-S11** was initially designed as an intermediate for elaboration to a water-soluble bioconjugatable bacteriochlorin (Scheme S4). The Suzuki coupling reaction of dibromobacteriochlorin **B-S10**³⁸ and **S12** proceeded smoothly. The position of the Q_y absorption band of **B-S11** (742 nm) was quite close to several other bacteriochlorins,³⁸ however, so further exploration was not pursued.

Scheme S4. Synthesis of a versatile bacteriochlorin building block.

Bacteriochlorin **B-S13** was designed to prepare a water-soluble bacteriochlorin by quaternization of two primary amines (Scheme S5). The Sonogashira coupling reaction of dibromobacteriochlorin **B-S12**¹² and ethyne 6 proceeded smoothly. However, studies in

parallel revealed that even four ammonium units on a bacteriochlorin did not afford the desirable water-solubility.¹⁵

Scheme S5. Synthesis of a versatile bacteriochlorin building block.

Non-commercial compounds. Compounds **S1**,¹¹ **S2**,^{S4} **B-S6**,^{S3} **B-S10**,³⁸ and **B-S12**¹² were prepared as described in the literature.

tert-Butyl 6-heptynoate. A mixture of 6-heptynoic acid (17, 1.0 g, 7.9 mmol), di-*tert*-butyl dicarbonate (2.3 g, 10 mmol) and MgCl₂ (75 mg, 0.79 mmol) in *tert*-butyl alcohol (4.0 mL) was stirred under argon for 16 h. The crude reaction mixture was diluted with water and extracted with ethyl acetate. The organic extract was dried (Na₂SO₄), concentrated and chromatographed [silica, hexanes/ethyl acetate (24:1)] to afford a viscous colorless liquid (0.98 g, 68%): ¹H NMR (400 MHz, CDCl₃) δ 1.48 (s, 9H), 1.50–1.59 (m, 2H), 1.67–1.74 (m, 2H), 1.95–1.96 (m, 1H), 2.19–2.26 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 24.4, 28.1, 28.3, 35.2, 68.7, 80.3, 84.3, 173.0; ESI-MS obsd 205.1199, calcd 205.1196 [(M + Na)⁺, M = C₁₁H₁₈O₂].

2-[3,5-Bis(*tert*-butoxycarbonylaminomethyl)phenyl]-1-trimethylsilylacetylene (S4). Following a reported procedure,^{S1} a mixture of S2 (1.0 g, 2.4 mmol), Pd(PPh₃)₄ (80 mg, 0.07 mmol, 0.03 equiv) and ZnBr₂ (0.40 g, 1.8 mmol, 0.67 equiv) was dried and deaerated under high vacuum for 30 min in a Schlenk flask. A mixture of THF/triethylamine [12 mL (2:1), bubbled with argon for 30 min] was added, and the resulting mixture was deaerated by two freeze-pump-thaw cycles. Trimethylsilylacetylene (S3, 1.0 mL) was added, and the reaction mixture was subjected to a third freeze-pump-thaw cycle. The reaction mixture was stirred at 60 °C for 2 days. The resulting mixture was allowed to cool to room temperature, washed with brine and water, and dried over Na₂SO₄. After removal of the solvent under vacuum, hexanes (10 mL) was added. The resulting suspension was sonicated (2 min) and centrifuged. The supernatant was discarded to afford a brown solid (0.70 g, 63%): mp 169–170 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 9H), 1.46 (s, 18H), 4.28 (s, 4H), 4.84 (s, 2H), 7.16 (s, 1H), 7.30 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 28.5, 44.2, 80.0, 95.0, 104.5, 124.0, 127.1, 130.2, 140.2, 156.3; ESI-MS obsd 455.2335, calcd 455.2337 [(M + Na)⁺, M = C₂₃H₃₆N₂O₄Si].

[3,5-Bis(*tert*-butoxycarbonylaminomethyl)phenyl]acetylene (S5). Following a reported procedure,^{S2} a mixture of S4 (0.66 g, 1.5 mmol) and K₂CO₃ (0.50 g, 3.6 mmol, 2.4 equiv) in MeOH/CH₂Cl₂ (6.6 mL, 1:1) was stirred at room temperature for 2 h. Water was added to the reaction mixture, and the resulting solution was extracted with CH₂Cl₂. The combined extract was washed with water, dried (Na₂SO₄), concentrated under vacuum, and

chromatographed [silica, CH₂Cl₂/ethyl acetate (10:1 to 5:1)] to yield a pale white solid (0.37 g, 67%): mp 132–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 18H), 3.05 (s, 1H), 4.26 (d, J = 5.6 Hz, 4H), 4.92 (s, 2H), 7.16 (s, 1H), 7.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 29.0, 44.2, 79.2, 80.0, 83.8, 123.0, 127.2, 130.2, 140.3, 156.3; ESI-MS obsd 383.1939, calcd 383.1941 [(M + Na)⁺, M = C₂₀H₂₈N₂O₄].

2-tert-Butoxycarbonylaminooxy-*N*-(2,5,8,11,14,17,20,23-octaoxapentacosan-25-yl)– acetamide (S10). A mixture of carboxylic acid 17 (287 mg, 1.50 mmol) and EDC (288 mg, 1.50 mmol) in CH₂Cl₂ (3.00 mL) was stirred for 5 min, followed by addition of amine S9 (575 mg, 1.5 mmol) and TEA (209 μL, 1.50 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with CH₂Cl₂ and washed one time with saturated NaHCO₃ solution and then with 2 N HCl solution. The organic phase was separated and dried (MgSO₄) to afford a colorless oil (595 mg, 71%): ¹H NMR (300 MHz, CDCl₃) δ 1.48 (s, 9H), 3.38 (s, 3H), 3.50–3.66 (m, 32H), 4.33 (s, 2H), 7.92 (br, 1H), 8.32 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 28.4, 39.1, 59.2, 69.7, 70.2, 70.6, 70.69, 70.74, 72.1, 76.0, 82.5, 157.7, 169.3; ESI-MS obsd 557.3272, calcd 557.3280 [(M + H)⁺, M = C₂4H₄₈N₂O₁₂].

2-Aminooxy-N-(2,5,8,11,14,17,20,23-octaoxapentacosan-25-yl)acetamide (S11). A sample of **S10** (162 mg, 0.290 mmol) in CH₂Cl₂ (1.00 mL) was stirred under argon for 2 min, followed by the addition of TFA (1.00 mL). After 1 h, the solvent was removed with a stream of argon, and the reaction residue was washed with saturated aqueous NaHCO₃. The organic layer was separated, dried (Na₂SO₄) and concentrated to afford a colorless oil (92.0 mg, 69%): ¹H NMR (300 MHz, CDCl₃, the two amine protons were not observed) δ 3.38 (s, 3H), 3.51–3.66 (m, 31H), 4.14 (s, 2H), 5.95 (s, 1H), 6.99 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 38.8, 59.3, 69.9, 70.2, 70.5, 70.8, 72.2, 75.2, 76.3, 170.4; ESI-MS obsd 457.2756, calcd 457.2756 [(M + H)⁺, M = C₁₉H₄₀N₂O₁₀].

3,13-Dimethoxycarbonyl-2,12-bis[2-(3,5-bis(tert-butoxycarbonylaminomethyl)phenyl)ethynyl]-5-methoxy-8,8,18,18-tetramethylbacteriochlorin (B-S5). Following a reported procedure,³⁵ a mixture of 2 (4.0 mg, 3.2 µmol), Pd(PPh₃)₂Cl₂ (1.0 mg, 1.5 µmol, 0.20 equiv) and S5 (8.0 mg, 24 µmol, 4.0 equiv) was dried and deaerated under high vacuum in a Schlenk flask for 1 h. DMF (0.80 mL) and triethylamine (0.40 mL) (bubbled with argon for 1 h for each) were added, and the resulting mixture was deaerated by three freeze-pump-thaw cycles. The reaction mixture was stirred at 80 °C for 4 h. The reaction mixture was allowed to cool to room temperature and then washed with brine and water. The organic layer was separated, dried (Na₂SO₄), concentrated to dryness and chromatographed [silica, CH₂Cl₂/ethyl acetate (5:1 to 2:1)] to afford a red solid (3.0 mg, 41%): ¹H NMR (300 MHz, CDCl₃) δ -1.18 (s, 1H), -0.89 (s, 1H), 1.52 (s, 36H), 1.95 (s, 6H), 1.97 (s, 6H), 4.25 (s, 3H), 4.32-4.34 (m, 9H), 4.45 (s, 8H), 5.04 (s, 4H), 7.31 (s, 2H), 7.65 (s, 2H), 7.70 (s, 2H), 8.77 (s, 1H), 8.92 (s, 1H), 9.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) & 28.7, 31.0, 31.2, 44.6, 46.0, 46.3, 47.9, 51.6, 52.4, 53.5, 64.6, 80.0, 82.9, 85.5, 95.8, 97.5, 98.9, 99.2, 101.0, 115.5, 118.0, 120.7, 124.0, 124.5, 127.0, 127.2, 128.8, 130.0, 135.7, 135.7, 135.9, 137.2, 140.3, 156.2, 157.9, 162.8, 165.8, 167.8, 170.6, 173; MALDI-MS obsd 1234.2789; ESI-MS obsd 1233.6212, calcd 1233.6231 $[(M + H)^+, M =$ C69H84N8O13]; \lambda abs (CH2Cl2) 383, 553, 791 nm.

15-Bromo-2,12-bis(3-oxoprop-1-enyl)-3,13-dimethoxycarbonyl-5-methoxy-8,8,18,18-tetramethylbacteriochlorin (B-S8). Following a standard procedure, ¹¹ a solution of **B-S6** (5.8 mg, 9.3 μ mol) in dry THF (3.1 mL) was treated dropwise (10 min) with a solution of NBS (11 mg, 6.0 equiv) in dry THF (0.56 mL), and the resulting mixture was stirred at room temperature

under argon for 1 h. The reaction mixture was diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was separated, dried (Na₂SO₄) and concentrated. Column chromatography [silica, CH₂Cl₂/ethyl acetate (50:1 to 25:1)] afforded a red solid (1.3 mg, 20%): ¹H NMR (300 MHz, CDCl₃) δ –0.83 (s, 1H), –0.58 (s, 1H), 1.92 (s, 6H), 1.93 (s, 6H), 4.21 (s, 3H), 4.28 (s, 3H), 4.29 (s, 2H), 4.31 (s, 3H), 4.36 (s, 2H), 7.19 (dd, *J* = 16.2, 7.5 Hz, 2H), 8.54 (s, 1H), 8.63 (s, 1H), 8.70 (d, *J* = 16.2 Hz, 2H), 10.07 (t, *J* = 7.5 Hz 2H); MALDI-MS obsd 702.2023, calcd 703.1762 [(M + H)⁺, M = C₃₅H₃₅BrN₄O₇]; λ_{abs} (CH₂Cl₂) 345, 393, 787 nm.

15-[4-(2-(*tert*-Butoxycarbonyl)ethyl)phenyl]-2,12-bis(3-oxoprop-1-enyl)-3,13-dimeth -oxycarbonyl-5-methoxy-8,8,18,18-tetramethylbacteriochlorin (B-S9). Samples of B-S8 (6.0 mg, 8.5 μmol), Pd(PPh₃)₄ (3.9 mg, 3.4 μmol), Cs₂CO₃ (11 mg, 34 μmol) and 12 (11 mg, 34 μmol) were placed in a Schlenk flask, and the resulting mixture was deaerated under high vacuum for 1 h. Toluene/DMF [0.8 mL (2:1), deaerated by bubbling with argon for 1 h] was added to the Schlenk flask under argon and deaerated by three freeze-pump-thaw cycles. The reaction mixture was stirred at 90 °C for 16 h. The reaction mixture was cooled to room temperature, concentrated to dryness, diluted with ethyl acetate and washed with saturated aqueous NaHCO₃. The organic layer was separated, dried (Na₂SO₄), concentrated and chromatographed [silica, CH₂Cl₂/ethyl acetate (50:1 to 25:1)] to provide a red solid (3.0 mg, 38%): MALDI-MS obsd 931.0782, calcd 933.2685 [(M+H)⁺, M = C4₈H₅₀N₄O₉Pd]; λ_{abs} (CH₂Cl₂) 339, 380, 561, 800 nm. ¹H NMR spectroscopy was tried, but an informative spectrum was not obtained.

15-(3-Aminophenyl)-2,12-bis[3,5-bis(tert-butoxycarbonyl)phenyl]-3,13-dimethoxycarbonyl-5-methoxy-8,8,18,18-tetramethylbacteriochlorin (B-S11). Following a general procedure,^{S5} samples of **B-S10** (9.2 mg, 8.0 µmol), Suzuki coupling partner **S12** (8.8 mg, 40 umol), Pd(PPh₃)₄ (2.8 mg, 2.4 µmol), K₂CO₃ (13 mg, 96 µmol) and toluene/DMF [0.80 mL (2:1), deaerated by bubbling with argon for 45 min] were added to a Schlenk flask, whereupon the mixture was deaerated by three freeze-pump-thaw cycles. The reaction mixture was stirred at 90 °C for 20 h. The reaction mixture was cooled to room temperature, concentrated to dryness, diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was separated, dried (Na₂SO₄) and concentrated. Column chromatography [twice, silica, CH₂Cl₂/ethyl acetate (47:3)] afforded a red solid (5.5 mg, 62%): ¹H NMR (CDCl₃, 300 MHz) δ – 1.40 (br, 1H), -1.09 (br, 1H), 1.64 (s, 18H), 1.66 (s, 18H), 1.74 (s, 3H), 1.77 (s, 3H), 1.83 (s, 3H), 1.85 (s, 3H), 3.52 (s, 3H), 3.86 (s, 2H), 4.20 (s, 3H), 4.30 (s, 3H), 4.37 (s, 2H), 6.93 (d, J = 2.4 Hz, 1H), 7.10 (s, 2H), 7.41 (t, J = 2.4 Hz, 1H), 8.50 (s, 1H), 8.60 (s, 1H), 8.75 (d, J = 1.8 Hz, 2H), 8.86 (s, 1H), 8.88 (s, 1H), 8.90 (d, J = 1.8 Hz, 2H), the two pyrrolic protons were not observed; MALDI-MS obsd 1161.8424; ESI-MS MS obsd 1060.5585, calcd 1060.5591 [(M + H)⁺, M = C₆₇H₇₇N₅O₁₃]; λ_{abs} (CH₂Cl₂) 374, 527, 742 nm.

3,13-Bis[3-(*N*-*tert*-butoxycarbonylamino)prop-1-ynyl]-5-methoxy-8,8,18,18-tetramethylbacteriochlorin (B-S13). Following a general procedure,³⁷ samples of B-S12 (22 mg, 40 µmol), Sonogashira coupling partner **6** (62 mg, 0.40 mmol), PdCl₂(PPh₃)₂ (5.6 mg, 8.0 µmol) and TEA (2.0 mL, deaerated by bubbling with argon for 45 min) were added to a Schlenk flask, whereupon the mixture was deaerated by three freeze-pump-thaw cycles. The reaction mixture was stirred at 60 °C for 18 h. The reaction mixture was cooled to room temperature, concentrated to dryness, diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO₃. The organic layer was separated, dried (Na₂SO₄) and concentrated. Column chromatography [silica, CH₂Cl₂/TEA (99:1 to 49:1)] afforded a green solid (5.5 mg, 72%): ¹H NMR (CDCl₃, 300 MHz) δ –1.86 (br, 1H), –1.66 (br, 1H), 1.56 (s, 9H), 1.57 (s, 9H), 1.92 (s, 12H), 4.38–4.41 (m, 7H), 4.57 (br, 4H), 5.12 (br, 2H), 8.49 (s, 1H), 8.50 (s, 1H), 8.68 (d, J = 1.5 Hz, 1H), 8.70 (d, J = 1.5 Hz, 1H), 8.80 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.7, 31.0, 31.2, 45.7, 45.9, 51.9, 64.7, 78.3, 80.7, 89.6, 92.8, 96.5, 97.3, 97.6, 111.9, 116.5, 125.0, 125.8, 131.4, 134.3, 135.6, 135.9, 138.4, 154.8, 161.4, 170.0, 170.6; MALDI-MS obsd 708.1287; ESI-MS obsd 706.3841, calcd 706.3837 [M = C₆₁H₈₀N₈O₉]; λ_{abs} (CH₂Cl₂) 354, 365, 376, 518, 743 nm.

3. Additional Photophysics Studies

A relatively low quantum yield of **B5** (0.017) was observed in neat water, compared with a value of 0.075 in DMSO. This diminution upon examination in aqueous solution was also observed with hydrophilic chlorins^{S6} and bacteriochlorins.⁴³ Herein, **B5** was examined in seven different solvents with distinct dielectric constants, and quantum yields were calculated using 2,12-di-*p*-tolyl-5-methoxybacteriolchlorin in toluene ($\Phi_f = 0.18$) as the standard. The results are listed in Table S5. The highest Φ_f value (0.082) was obtained in toluene, which is the least polar solvent among those screened, while the lowest Φ_f (0.016) was obtained in water.

		Absorp	otion	Emis		
Solvent	Dielectric constant	λ _{max} (nm)	fwhm (nm)	λ _{max} (nm)	fwhm (nm)	$\Phi_{ m f}$
Toluene	2.4	811	33	820	30	0.082
CH ₂ Cl ₂	8.9	810	35	821	30	0.054
CH ₃ OH	33	806	36	819	38	0.044
DMSO	47	810	34	821	34	0.075
H ₂ O	80	819	42	831	34	0.017
D ₂ O	80	819	43	832	36	0.025
Formamide	111	816	39	827	34	0.043

Table S5. Solvent effects on the fluorescence properties of B5.

The absorption and emission spectra of 8 in DMF are shown in Figure S2.

Figure S2. Absorption (solid) and fluorescence (dashed) spectra for 8 in DMF. The fluorescence was obtained using excitation at the Soret maximum.

4. Flow Cytometry Data

Figure S3. Dot plot of side-scattered light (SSC) versus forward-scattered light (FSC), which provide a measure of granularity and size, respectively. Selection of beads for subsequent analyses was achieved by gating around the major population of single beads, as shown.

5. References

- S1 A. Florian, M. J. Mayoral, V. Stepanenko and G. Fernandez, *Chem. Eur. J.*, 2012, **18**, 14957–14961.
- S2 H. N. Nakayama, T. Morita and S. Kimura, J. Phys. Chem. C, 2010, 114, 4669–4674.
- S3 E. Yang, N. Zhang, M. Krayer, M. Taniguchi, J. R. Diers, C. Kirmaier, J. S. Lindsey, D.
 F. Bocian and D. Holten, *Photochem. Photobiol.*, 2015, 92, 111–125.
- S4 B. Sookcharoenpinyo, E. Klein, Y. Ferrand, D. B. Walker, P. R. Brotherhood, C. Ke, M. P. Crump and A. P. Davis, *Angew. Chem. Int. Ed.*, 2012, **51**, 4586–4590.
- S5 K. R. Reddy, J. Jiang, M. Krayer, M. A. Harris, J. W. Springer, E. Yang, J. Jiao, D. M. Niedzwiedzki, D. Pandithavidana, P. S. Parkes-Loach, C. Kirmaier, P. A. Loach, D. F. Bocian, D. Holten and J. S. Lindsey, *Chem. Sci.* 2013, 4, 2036–2053.
- S6 K. E. Borbas, V. Chandrashaker, C. Muthiah, H. L. Kee, D. Holten and J. S. Lindsey, J. Org. Chem., 2008, 73, 3145–3158.

6. Spectra

S15

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOFTM Reflector Spec #1 MC[BP = 363.1, 4129]

S18

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF™ Reflector Spec #1 MC[BP = 364.9, 20030]

Printed: 17:00, April 12, 2016

S20

AD SCIEX I UF/I UF IT Series ExplorerTM 72098

				tion and dist line line and a
Spectrum/Peak Report	Date 4/8/2015	Time 12:27:17	Page	1 of 1

Method file	\$ <untitled></untitled>
Information	Default Method
Data File	C:\Chem32\1\DATA\JIMMY\grouped data\J121A, C-PEG4-CO2H IN WATER.SD
	Created : 2/28/14 16:32:33

AD SCIEX IUH/IUH M Series Explorer 72098

TOF/TOF[™] Reflector Spec #1 MC[BP = 1788.1, 5692]

				nin serie state serie dens anne sant territ state en	ne blen men men dett stell dett dette so			6 (1995 - 12
Spectrum/Peak Report	Date	4/8/2015	Time	10:59:12	Page	1	of	1
	Table Index Marrie 19932 Marrie					ADD 1000 1000 7		4 102 3

Method file	•	<untitled></untitled>
Information		Default Method
Data File		C:\Chem32\1\DATA\JIMMY\grouped data\J122, C-PEG4-NHS IN WATER.SD
		Created : 2/17/14 12:57:21

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF™ Reflector Spec #1[BP = 2510.0, 7259]

NAMES AND ADDRESS AND			The second	and a second sec					
Spectrum/Peak	Report	Date	5/15/2014	Time	11:36:47	Page	1	of	1

Method file	:	<method not="" saved=""></method>
Information	:	Default Method
Data File	:	C:\CHEM32\1\DATA\NUONUO\20140515\PRO-C-ES-NHPEG8-C-COOH(H2O).SD
		Created : 5/15/14 11:36:24

*** End Spectrum/Peak Report ***

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF™ Reflector Spec #1[BP = 234.1, 19091]

		a and and and and and a	n and and and and and and and and and a					
Spectrum/Peak	Report	Date	8/15/2014	Time	10:36:03	Page	1 of	5 1
			n and and the and the set of a set of a set					

Method file	:	<method not="" saved=""></method>
Information	:	Default Method
Data File	÷	C:\CHEM32\1\DATA\NUONUO\20140815\PRO-C-ES-YNL-COOH-NHPEG4(H2O).SD
		Created : 8/15/14 10:36:59

Report generated by : jon

Signature:

*** End Spectrum/Peak Report ***

 $Ar = \begin{pmatrix} NHCO(C_2H_4O)_4CH_3 \\ HICO(C_2H_4O)_4CH_3 \end{pmatrix}$

S32

			200 ACC 200 END 200 CD			an anna anna anna anna hann hann hann anna anna anna
Spectrum/Peak	Report	Date 4/24/2014	Time	16:09:55	Page	1 of 1

Method file	:	<method not="" saved=""></method>
Information	:	Default Method
Data File	:	C:\CHEM32\1\DATA\NUONUO\20140424\PRO-C-ES-NHPEG8-I-COOH(H2O).SD
		Created : 4/24/14 16:08:52

Spectrum/Peak Report	Dato	1/11/2011	Time	10.06.50	D		<i>r</i>	
	Date	4/11/2014	1 TIII6	10:00:52	Page	1	OI	1

Method file		<untitled></untitled>
Information		Default Method
Data File	:	C:\CHEM32\1\DATA\NUONUO\20140411\PRO-C-ES-NHBOC-COOBUT(DCM)-1.SD
		Created : 4/11/14 17:58:09

S36

3702.0
	er hiel siel van met wer hier van der ver ver die and her siel her siel hier siel in an ein die hier sie	this loss data with this arm and time and only and test	
Spectrum/Peak Report	Date 7/21/2015 Tim	e 11:33:48 P	age 1 of 1

Method file	<untitled></untitled>
Information	Default Method
Data File	<untitled></untitled>

Overlaid Spectra:

π	ivanie	L CANS (IIII)	nuo (no)		
1		411.0	1.03010		
1		712.0	0.77704		
1		512.0	9.9096E-2		
1		539.0	8.3821E-2		
1		649.0	7.9855E-2		

Report generated by : Lindsey Lab

Signature:

```
*** End Spectrum/Peak Report ***
```


AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF™ Reflector Spec #1 MC[BP = 363.8, 3994]

					ie das une sue sue ant bile d		
	-						
Spectrum/Peak Report	Da	te 7/2	2/2015	Time	16:00:.	36 Page	1 of 1
	2000 1000 (DEC 1000 1000 1			ter nere and they done it			

Method file : <untitled> Information : Default Method Data File : <untitled>

Overlaid Spectra:

#	Name	Abs(AU)	
1		416.0	0.63036
1		720.0	0.51545
1		302.0	0.13659
1		515.0	6.8746E-2
1		543.0	5.9453E-2

Report generated by : Lindsey Lab

Signature:

*** End Spectrum/Peak Report ***

1

))

11)1

3 ī

1....

E

Method file :	<method not="" saved=""></method>
Information :	Default Method
Data File :	<data not="" saved=""></data>

Overlaid Spectra:

Report generated by : jon

Signature:

*** End Spectrum/Peak Report ***

Printed: 08:23. July 28. 2013

Spectrum/Peak Report Date 4/17/2015 Time 14:09:16 Page 1 of 1

Method file : <untitled>
Information : Default Method
Data File : C:\CHEM32\1\DATA\JIMMY\GROUPED DATA\UVVIS JIMMY A\TEMP\J91, PRO-AM
- RE-TAKEN.SD Created : 4/17/15 14:07:57

Overlaid Spectra:

Page 1 of 1

Spectrum/Peak Report

Date 4/8/2015 Time 14:21:25

Method file	*	<untitled></untitled>	
Information		Default Method	
Data File		C:\CHEM32\1\DATA\JIMMY\J93A IN METHANOL,.SD	Created : 4/8/15
		14:20:55	

#	Name	Peaks(nm)	Abs(AU)	
		360 0	0 32428	
1		726.0	0.24971	
1		507.0	8.0328E-2	

Report generated by : Lindsey Lab

Signature:

_____ *** End Spectrum/Peak Report ***

And have been been been been been been been be	the second interaction and the second second second	the second restant interest contact interests interests interests interests. Interests	sider headed, includer tasked, identifier del	server valuation annual mention interval annual resolution annual interval	Andreas approved theorem, appending indicated theorem, therease	a paper dente and a serie and a serie and a series and a
- CALLER AND DESCRIPTION OF A DESCRIPTIO	These particular include instance include					
And and the set of the						
						a see factor and and a see factor as a factor for
			1. Company of the second s			
	· · · · · · · · · · · · · · · · · · ·		and the second se	the second se	a second s	and the second sec
and an an an and a second and a s	The second s		A 2 A feet restore when	the second	· · · · · · · · · · · · · · · · · · ·	

Spectrum/Peak Report

Date 4/8/2015 Time 10:54:35 Page 1 of 1

<untitled> Method file : Information : Default Method C:\Chem32\1\DATA\JIMMY\grouped data\J94, PRO-AM-CO2TBU.SD Data File : Created : 8/23/13 14:03:18

```
Overlaid Spectra:
```


*** End Spects	:um/Peak Report *	**	

Spectrum/Peak Report Date 4/8/2015 Time 10:58:03 Page 1 of 1

Method file : <untitled>
Information : Default Method
Data File : C:\Chem32\1\DATA\JIMMY\grouped data\J115A, AM-COOH IN METHANOL.SD
Created : 9/5/13 10:31:21

Overlaid Spectra:

AB Sciex TOF/TOF™ Series Explorer™ 72098

MALES MALE AND ADDRESS OF THE PARTY AND ADDRESS ADDRES	and speed label have dated south gives and dates have been been seen	land, book make sold more when many parts store some proce when and more than	ac sales mean lenos teas sales talen. Alles	an impany, pantan manan impany makan impany interativ menuh ind	des senter sente cours sector, calabi, faides surger patter	Control Lands, Dayon, Jopper, Jopper, Notes, Naper, Dayon, L	week space most water been, start arrest water	- provide restored contents, manager resource contents, t
				the second s	CONT. 40.17	ORT 1087		
Concentration (Decile	Domost		Data	A/0/2015	Timo 10.	60.10	Daga 1	of 1
SDECITIIII/PEAK	REDOLL		Date	4/0/2010	TTHE TA:	JJ. 10	raue 1	UL L
	and the part of the second second			and the second sec			C	

Spectrum/Peak Report

Method file	*	<untitled></untitled>
Information	ŧ	Default Method
Data File	t.	C:\Chem32\1\DATA\JIMMY\grouped data\J123, C-ES-NHBOC IN THF.SD
		Created : 2/12/14 15:24:16

# Name	Peaks(nm)	Abs(AU)		
1	748.0	1.11890		
1	372.0	1,10520		
	526.0	0.27391		

Report generated by : Lindsey Lab

Signature:

```
*** End Spectrum/Peak Report ***
```


Printed: 17:07, February 26, 2014

333.1

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF™ Reflector Spec #1 MC[BP = 364.4, 1896]

						2 300 300 1	in long seen and	A Shore server serve
Spectrum/Peak Report	Date	2/25/2014	Time	15:02:48	Page	1	of	1
			- 101 355 365 155 1		22 229 221 222 222 223 22	in anna ainm à		

Method file	1	<untitled></untitled>	
Information	:	Default Method	
Data File		C:\CHEM32\1\DATA\JIMMY\PRO-C-ES-NHBOC-BR.SD	Created : 2/25/14
		15:01:43 cthick	

*** End Spectrum/Peak Report ***

Ē I

....

TOF/TOF[™] Reflector Spec #1[BP = 364.0, 60609]

"Minery concess manks (manus, money calous, many many which childs proved a	second division included in the local division of	territy proper second fishers prover was	Non second house second product writing another move	of subline monitor motion (merger person minister monitor persons hereing, handler have	the state of the s				
	the second		and party many party states, which your start	in header manine, persons seement character character character character character character character character	the sample blocks theney being highly highly highly being	The second beauty beauty beauty beauty beauty	shiney thereas prove money uses	the contrast property resident contrast, manufact interior contrast, property contrast, manufact contrast,	make description for any building second description of the West West West Street
							Contraction (Section) Section (Section	In territy sends, broker ments could been broker works, and a count cargo wide cards	Store many lates cause wave trans them to the store that the store that they wave
A A A A A A A A A A A A A A A A A A A									

Spectrum/Peak Report

200

Date 3/15/2015 Time 09:51:38 Page 1 of

Method file	:	<method not="" saved=""></method>
Information		Default Method
Data File		C:\Chem32\1\DATA\nuonuo\20140728\PRO-C-ES-YNL-COOH-NHBOC(DCM).SD
		Created : 7/29/14 18:15:13

# Name	Peaks(nm)	Abs(AU)		
	381.0	0.86713		
	755.0	0.60377		
1	546.0	0.21494		

Report generated by : jon

Signature:

*** End Spectrum/Peak Report ***

TOF/TOF™ Reflector Spec #1[BP = 1392.0, 416]

AB Sciex TOF/TOF™ Series Explorer™ 72098

Spectrum/Peak Report Date 5/13/2014 Time 10:07:49 Page 1 of 1

Method file	<method not="" saved=""></method>
Information	 Default Method
Data File	C:\CHEM32\1\DATA\NUONUO\20140513\PRO-C-ES-NHBOC-C-COOBUT(DCM).SD
	Created : 5/13/14 10:07:17

#	Name	Peaks(nm)	Abs(AU)		
1		375.0	1.71840		
1		741.0	1.37560		
1		525.0	0.44172		

Report generated by : jon Signature:

*** End Spectrum/Peak Report ***

AB Sciex TOF/TOF™ Series Explorer™ 72098

TOF/TOF TM Reflector Spec #1[BP = 364.1, 8763]

Spectrum/Peak Report

Date 4/11/2014 Time 18:06:52 Page 1 of 1

Method file : <untitled> Information : Default Method Data File : C:\CHEM32\1\DATA\NUONUO\20140411\PRO-C-ES-NHBOC-COOBUT(DCM)-1.SD Created : 4/11/14 17:58:09

