Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

SUPPORTING INFORMATION (New J. Chem)

Understanding multivalent effects in glycosidase inhibition using *C*glycoside click clusters as molecular probes

Fabien Stauffert,^a Anne Bodlenner,^a Thi Minh Nguyet Trinh,^b M. Isabel García-Moreno,^c Carmen Ortiz Mellet,^c Jean-François Nierengarten,^{*b} and Philippe Compain^{*a}

^aLaboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France

^bLaboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg/CNRS (UMR 7509), École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France

> ^cDepartamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, E-41012, Sevilla, Spain

¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 6a:2
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 6a:
¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 7:4
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 7:5
¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 8:6
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 8:
¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 9:8
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 9:9
¹ H NMR spectrum (400 MHz, CD ₃ OD) of compound 10:10
^{13}C NMR spectrum (100 MHz, CD_3OD) of compound 10:11
¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 11:12
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 11:
¹ H NMR spectrum (400 MHz, CD ₃ OD) of compound 4b:14
13 C NMR spectrum (100 MHz, CD ₃ OD) of compound 4b:15
¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 3:16
¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 3:
¹ H NMR spectrum (300 MHz, D ₂ O) of compound 2b:18
^{13}C NMR spectrum (75.5 MHz, D_2O) of compound 2b:19
¹ H NMR spectrum (400 MHz, DMSO- <i>d</i> ₆) of compound 2a:
¹³ C NMR spectrum (100 MHz, DMSO- <i>d</i> ₆) of compound 2a:21
Table S1: Optimization of the olefin metathesis reaction of compound 6a: 22

¹H NMR spectrum (400 MHz, CDCl₃) of compound 6a:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 6a:

ppm 130 120 110 100 90 80 70 60 50 40 30

¹H NMR spectrum (400 MHz, CDCl₃) of compound 7:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 7:

¹H NMR spectrum (400 MHz, CDCl₃) of compound 8:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 8:

^{ppm} 170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

¹H NMR spectrum (400 MHz, CDCl₃) of compound 9:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 9:

															
ppm	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

¹H NMR spectrum (400 MHz, CD₃OD) of compound 10:

^{ppm} 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24

¹³C NMR spectrum (100 MHz, CD₃OD) of compound 10:

¹H NMR spectrum (400 MHz, CDCl₃) of compound 11:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 11:

		1 1 1							1 1 1 1 1							
^{pp} በ70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

¹H NMR spectrum (400 MHz, CD₃OD) of compound 4b:

¹³C NMR spectrum (100 MHz, CD₃OD) of compound 4b:

1 1 1 1						1 1 1 1 1				1 1 1 1 1				
ppm 150	140	130	120	110	100	00	80	70	60	50	10	30	20	10
150	140	130	120	110	100	30	00	70	00	50	40	30	20	10

¹H NMR spectrum (400 MHz, CDCl₃) of compound 3:

¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3:

¹H NMR spectrum (300 MHz, D₂O) of compound 2b:

¹³C NMR spectrum (75.5 MHz, D₂O) of compound 2b:

¹³C NMR spectrum (100 MHz, D₂O/DMSO-*d*₆, 4:1) of compound 2a:

Entry	Catalyst	T (°C)	Time	Additive	Product 7
1	Hoveyda-Grubbs II (20 mol%)	40	18 h	-	~ 42% ^[b]
2	Grubbs I (10 mol%)	40	26 h	1,4-BQ (20 mol%)	35%
3	Grubbs II (15 mol%)	rt	23 h	1,4-BQ (20 mol%)	55%
4	Grubbs II (15 mol%)	rt	70 h	1,4-BQ (20 mol%)	68%

Table S1. Optimization of the olefin metathesis reaction of compound 6a.^[a]

^[a] Reactions were performed in CH_2CI_2 under argon. ^[b] Contaminated with analogues of **7** bearing C_5 or C_7 alkyl spacer as judged by MS analysis.