Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information for

Turn-on fluorescent detection of melamine based on Ag nanoclusters-Hg²⁺ system

Qianqian Du ^{a,b}, Fei Qu ^{a,b*}, Beibei Mao ^{a,b}, Shuyun Zhu ^{a,b} and Jinmao You ^{a,b,c*}

^a The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu

273165, Shandong, China

^b Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine,

Qufu Normal University, Qufu 273165, Shandong, China

° Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining

810001, China

Tel.: +86 537 4456305; Fax: +86 537 4456305.

* Corresponding authors: qufei3323@163.com; jmyou6304@163.com

¹ Fei Qu and Qianqian Du contributed equally to this work.

Fig. S1. Fluorescence spectra (a) and quenching efficiency (b) of Ag NCs in the presence of different concentrations of Hg^{2+} . F and F₀ were the maximum emission intensities of Ag NCs in the presence and absence of Hg^{2+} , respectively.

Fig. S2. Optimization of reaction conditions for detecting melamine based on Ag NCs-Hg²⁺ system (a, probe concentration; b, reaction time; c, pH value; d, temperature). The final concentration of Hg²⁺ and melamine were 30 and 30 μ M, respectively.

Fig. S3. Influence of addition order on the fluorescence response of melamine. Order 1: Ag NCs were incubated with Hg^{2+} for 10 min without addition of melamine; order 2: Ag NCs were pre-incubated with Hg^{2+} for 10 min and then melamine was added; order 3: Hg^{2+} , melamine and Ag NCs were added together; order 4: melamine was pre-incubated with Hg^{2+} for 1 h followed by the addition of Ag NCs. The concentration of Hg^{2+} and melamine were 30 and 30 μ M, respectively. Blank was the fluorescence of Ag NCs without Hg^{2+} and melamine.

Fig. S4. Fluorescence spectra of Ag NC-PEI 1300 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.13 to 30μ M melamine).

Fig. S5. Fluorescence spectra of Ag NC-PEI 1800 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.15 to 30 μ M melamine).

Fig. S6. Fluorescence spectra of Ag NC-PEI 2000 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.30 to 30μ M melamine).

Fig. S7. Fluorescence spectra of Ag NC-PEI 10000 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.40 to 30 μ M melamine).

Fig. S8. Fluorescence spectra of Ag NC-PEI 25000 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.45 to 30 μ M melamine).

Fig. S9. Fluorescence spectra of Ag NC-PEI 70000 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.50 to 30μ M melamine).

Fig. S10. Fluorescence spectra of Ag NC-PEI 750000 in the presence of different concentrations of melamine (a) and the corresponding linear range (b) (The inset displayed the linear range for 0.60 to 30 μ M melamine).

Fig. S11. Fluorescence recovery of Ag NCs with addition of melamine based on Ag NCs-metal ion systems. The concentrations of Cu^{2+} , Hg^{2+} , Co^{2+} and Ni^{2+} were 30 μ M, and melamine was 30 μ M.

NCs-Hg²⁺-Melamine complex, and Ag NCs-Melamine in aqueous solution; (b) UV-vis spectra of Hg²⁺ (stright line), Melamine (dot line), and Melamine-Hg²⁺ complex (dash line).

Fig. S13. Fluorescence intensity of different molar ratio between Hg^{2+} and melamine. Blank was the fluorescence of Ag NCs without Hg^{2+} and melamine. The concentration of Hg^{2+} was 30 μ M.

Ag NC-PEIs	Linear range	Linear equation	LOD
Ag NC-PEI 600	0.10 - 30 μM	y=7.4654x-2.8013	30 nM
Ag NC-PEI 1300	0.13 - 30 μM	y=5.9801x-4.7112	45 nM
Ag NC-PEI 1800	0.15 - 30 μM	y=5.0943x+2.7857	75 nM
Ag NC-PEI 2000	0.30 - 30 μM	y=7.1464x+3.1607	0.10 µM
Ag NC-PEI 10000	0.40 - 30 μM	y=4.0357x-4.8214	0.13 µM
Ag NC-PEI 25000	0.45 - 30 μM	y=2.3207x-0.3607	0.16 µM
Ag NC-PEI 70000	0.50 - 30 μM	y=1.5836x-1.0536	0.19 µM
Ag NC-PEI 750000	0.60 - 30 µM	y=2.0414x-0.8643	0.23 µM

Table S1. The influence of molecular weights of PEI on the detection of melamine based on Ag NCs-Hg²⁺ system.

Methods	Probes	Linear range (µM)	LOD (µM)	References
Molecular imprinting	CdTe quantum dots	0.1-0.8	0.04	26
Molecular imprinting	-	0.63-110	0.068	27
Colorimetric	Fe ₃ O ₄ nanoparticles–H ₂ O ₂ –ABTS	2.0-40.0	2	28
Colorimetry	Au nanoparticles	-	7.9	29
Colorimetry	label-free Ag nanoparticles	4.0-170	2.32	30
Colorimetry	Ag nanoparticles functionalized with sulfanilic acid	0.1-3.1	0.011	22
Fluorescence	CdTe@SiO ₂ -Au nanoparticles	0.0075-0.35	0.89	20
Fluorescence	CdTe quantum dots	0.792-9.50	0.31	31
Fluorescence	Au nanoclusters	0.5-10	0.15	17
Fluorescence	Graphene quantum dots	0.15-20	0.12	16
Fluorescence	Ag NC-PEI 600-Hg ²⁺ system	0.1-30	0.03	This work

Table S2. Comparison	of different me	ethods for the	determination	of melamine
Hubic 52 . Comparison	of unforent inc		acterimation	or morannie.

Sample –	Concentration of melamine (µM)		Pacovary (%)	PSD(n-2.0/2)
	Amount added	Amount found	- Keevery (70)	KSD (II–5,70)
Raw milk 1	0	not found	-	-
Raw milk 2	3	3.03 ± 0.08	101	2.94
Raw milk 3	15	14.46 ± 0.21	96	1.48
Raw milk 4	28	27.03 ± 0.25	97	0.93
Infant formula 1	0	not found	-	-
Infant formula 2	3	2.92 ± 0.08	97	3.01
Infant formula 3	15	14.38 ± 0.26	96	1.81
Infant formula 4	28	27.67 ± 0.11	99	0.39
Dog food 1	0	not found	-	-
Dog food 2	3	2.91 ± 0.07	97	2.56
Dog food 3	15	14.82 ± 0.11	99	0.73
Dog food 4	28	27.21 ± 0.17	97	0.62

Table S3. Detection of melamine in raw milk, infant formula and dog food based on Ag NC-PEI 600-Hg²⁺ system.