Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

High Temperature Spin Crossover in [Fe(pyrazine){Ag(CN)₂}₂] and its Solvate

Il'ya A. Gural'skiy, Sergii I. Shylin, Bohdan O. Golub, Vadim Ksenofontov, Igor O. Fritsky and Wolfgang Tremel

SUPPLEMENTARY INFORMATION

Experimental details

Magnetic susceptibility measurements. Magnetic susceptibility measurements were carried out with a Quantum-Design MPMS-XL-5 SQUID magnetometer equipped with a 5 T magnet and a MPMS sample space oven over the temperature range 306–420 K with a heating and cooling rate of 2 K min⁻¹, and a magnetic field of 0.5 T. Diamagnetic correction for the molecule was derived from the Pascal's constants.

Mössbauer measurements. Room-temperature ⁵⁷Fe-Mössbauer spectra were recorded in transmission geometry with a ⁵⁷Co source in a rhodium matrix using a conventional constant-acceleration Mössbauer spectrometer. 3 K spectra were recorded at ESRF using the Synchrotron Mössbauer Source. Isomer shifts are given relatively to an α -Fe foil at ambient temperature. Fits of the experimental Mössbauer data were performed using the Recoil software (Lagarec and Rancourt, Ottawa University).

IR spectroscopy. IR spectra were recorded using a Nicolet Nexus spectrometer fitted with a Golden Gate attenuated total reflection accessory (Thermo Nicolet). Spectra were recorded at 4 cm⁻¹ resolution, averaging 16 scans.

Thermal analysis. Thermal analysis was performed with DTG-60H Simultaneous TGA/DTA in air flow of 100 ml min⁻¹ within a temperature range 273-873 K.

Powder XRD. The samples were analysed with a Siemens D5000 powder diffractometer using $Cu-K_{\alpha}$ radiation.

Figure S1. Comparison of the network of **1**•**MeCN** (green) and of the complex reported by Real et al. (red).

Figure S2. PXRD of 1 (red), 1·MeCN (black) and theoretical patterns simulated from the single crystal structure of 1·MeCN (blue).

Figure S3. Reproducibility of magnetic properties (different batch). Temperature dependent magnetic measurements of the complex in three consequent thermal cycles.

Figure S4. Simulated influence of the iron spin state on Mössbauer spectra in magnetic field for the high quadrupole doublet of **1** ($\delta = 0.3 \text{ mm s}^{-1}$, $\Delta E_Q = -0.74 \text{ mm s}^{-1}$, B = 6.0 T, $\Gamma = 0.23 \text{ mm s}^{-1}$, $\theta = 0^\circ$).

Empirical formula	$C_{10}H_7Ag_2FeN_7$
Formula weight	496.82
Temperature/K	296.15
Crystal system	monoclinic
Space group	Cm
a/Å	6.728(3)
b/Å	12.521(5)
c/Å	8.320(3)
α/°	90
β/°	106.478(8)
γ/°	90
Volume/Å ³	672.1(5)
Z	2
$\rho_{calc}g/cm^3$	2.455
μ/mm^{-1}	3.948
F(000)	472.0
Crystal size/mm ³	$0.1 \times 0.05 \times 0.02$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.106 to 55.548
Index ranges	$-8 \le h \le 8, 0 \le k \le 16, -10 \le l \le 10$
Reflections collected	1399
Independent reflections	1399 [$R_{sigma} = 0.0659$]
Data/restraints/parameters	1399/2/60
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0965, wR_2 = 0.2412$
Final R indexes [all data]	$R_1 = 0.1041, wR_2 = 0.2473$
Largest diff. peak/hole / e Å ⁻³	5.64/-2.77
Flack parameter	0.19(14)

Tabl	le 1	Crystal	data	and	stru	ucture	refiner	nent.
------	------	---------	------	-----	------	--------	---------	-------

	Atom	x	у	z	U(eq)
Fe1		-10477(6)		-5000 -10411(5)	6.9(8)
N2		- 11160(30)	-	6068(13) 12180(20)	8.7(13)
C1		-9350(40)	-	3270(20) -7660(30)	24(5)
N1		-9860(30)	-	3902(13) -8730(20)	8.7(13)
C2		- 11710(30)	-	6590(15) 13320(30)	8.7(13)
N4		- 13400(40)		-5000 10380(30)	8.7(13)
N3		-7520(30)		-5000 10470(30)	8.7(13)
C3		-6540(30)	-	5886(15) 10370(30)	8.7(13)
C4		- 14390(30)	-	5901(15) 10360(20)	8.7(13)
C6		- 6800(100)		-5000 -4530(60)	48(6)
C5		- 5560(110)		-5000 -5710(70)	48(6)
N5		-4600(90)		-5000 -6580(50)	48(6)
Ag1		-8045(4)	-23	331.6(13) -5599(4)	27.6(6)

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotronic Displacement
Table 2 Fractional Atomic Cool unlates (*10) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) H_{cr} is defined as 1/3 of of the trace of the orthogonalised H_{TT} tensor
i di difetters (il x10). Ceq is defined as 1/5 of of the trace of the of thogonalised Off tensor.

Table 3 Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U_{12}
Fe1	6.2(15)	2.9(15)	11(2)	0	1.2(15)	0
N2	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
C1	25(12)	28(12)	17(12)	-3(9)	4(10)	-8(9)
N1	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
C2	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
N4	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
N3	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
C3	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
C4	9(3)	5(3)	10(3)	1(3)	0(3)	3(3)
C6	80(19)	23(9)	34(13)	0	6(13)	0
C5	80(19)	23(9)	34(13)	0	6(13)	0
N5	80(19)	23(9)	34(13)	0	6(13)	0
Ag1	33.4(10)	27.1(10)	18.4(9)	-10.2(11)	1.1(7)	2.1(13)

Table 4 Bond Lengths.

Atom Atom		Length/Å	Atom Atom		Length/Å
Fe1	$N2^1$	1.942(17)	N4	$C4^1$	1.31(2)
Fe1	N2	1.942(18)	N4	C4	1.31(2)
Fe1	N1	1.923(18)	N3	C3 ¹	1.28(2)
Fe1	$N1^1$	1.923(18)	N3	C3	1.28(2)
Fe1	N4	1.98(2)	C3	$C4^3$	1.45(2)
Fe1	N3	2.00(2)	C4	C3 ⁴	1.45(2)
N2	C2	1.13(3)	C6	C5	1.46(9)
C1	N1	1.16(3)	C5	N5	1.10(8)
C1	Ag1	2.06(3)	Ag1	$C2^5$	2.08(2)
C2	Ag1 ²	2.08(2)			

¹+X,-1-Y,+Z; ²-1/2+X,-1/2+Y,-1+Z; ³1+X,+Y,+Z; ⁴-1+X,+Y,+Z; ⁵1/2+X,1/2+Y,1+Z

Table 5 Bond Angles.

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom			Angle/°		
N2	Fe1	$N2^1$	87.0(10)	C2	N2	Fe1	171.3(17)		
N2	Fe1	N4	89.2(7)	N1	C1	Ag1	170(2)		
$N2^1$	Fe1	N4	89.2(7)	C1	N1	Fe1	175(2)		
$N2^1$	Fe1	N3	90.3(8)	N2	C2	$Ag1^2$	170.2(18)		
N2	Fe1	N3	90.3(8)	C4	N4	Fe1	120.7(13)		
N1	Fe1	N2	177.8(8)	$C4^1$	N4	Fe1	120.7(13)		
$N1^1$	Fe1	N2	90.9(6)	$C4^1$	N4	C4	119(3)		
$N1^1$	Fe1	$N2^1$	177.8(8)	C3	N3	Fe1	119.6(13)		
N1	Fe1	$N2^1$	90.9(6)	$C3^1$	N3	Fe1	119.6(13)		
$N1^1$	Fe1	N1	91.2(10)	$C3^1$	N3	C3	120(3)		
N1	Fe1	N4	90.1(7)	N3	C3	$C4^3$	120.4(19)		
$N1^1$	Fe1	N4	90.1(7)	N4	C4	C3 ⁴	119.9(19)		
N1	Fe1	N3	90.3(7)	N5	C5	C6	179(7)		
$N1^1$	Fe1	N3	90.3(7)	C1	Ag1	$C2^5$	171.4(9)		
N4	Fe1	N3	179.3(11)						

¹+X,-1-Y,+Z; ²-1/2+X,-1/2+Y,-1+Z; ³1+X,+Y,+Z; ⁴-1+X,+Y,+Z; ⁵1/2+X,1/2+Y,1+Z

Table 6 Torsion Angles.

ABCD	Angle/° A B C D	Angle/°
Fe1 N4 C4 C3 1	-179.1(14) C3 ³ N3C3C4 ²	-8(4)
Fe1 N3 C3 C4 2	-178.3(15) C4 ³ N4C4C3 ¹	2(4)

¹-1+X,+Y,+Z; ²1+X,+Y,+Z; ³+X,-1-Y,+Z

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³).							
x	у	Z	U(eq)				
-7221	-6525	-10295	10				
-13705	-6548	-10337	10				
-8248	-5000	-5146	71				
-6493	-4374	-3843	71				
-6493	-5626	-3843	71				
	gen Atom Coordinat x -7221 -13705 -8248 -6493 -6493	gen Atom Coordinates (Å×10 ⁴) and Isotro x y -7221 -6525 -13705 -6548 -8248 -5000 -6493 -4374 -6493 -5626	gen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Par x y z -7221 -6525 -10295 -13705 -6548 -10337 -8248 -5000 -5146 -6493 -4374 -3843 -6493 -5626 -3843				

Table 7 Hydrogen Atom Coordinates $(\text{\AA} \times 10^4)$ and Isotropic Displacement Paramete	's (Å	$^{2}\times$	10³)
--	-------	--------------	-----------------------	---

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.