Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry

Supplementary Information for

"An ion pair receptor facilitating extraction of chloride salt from aqueous to organic

phase"

by

Szymon Zdanowski, Piotr Piątek and Jan Romanski*

Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland

TABLE OF CONTENTS

1.	General	1
2.	UV-vis measurements (Job Plots, Dilution studies, Binding isotherms)	2
3.	NMR measurements	9
4.	Extraction experiments	11
5.	Crystal data	14
6.	NMR Spectra	17

GENERAL INFORMATION

Unless specifically indicated, all other chemicals and reagents used in this study were purchased from commercial sources and used as received. Purification of products was performed using column chromatography on silica gel (Merck Kieselgel 60, 230-400 mesh) with mixtures of chloroform/methanol. Thin-layer chromatography (TLC) was performed on silica gel plates (Merck Kieselgel 60 F254).

¹H and ¹³C NMR spectra used in the characterization of products were recorded on Bruker 300 or 500 spectrometer using a residual protonated solvent as internal standard.

High resolution mass spectra (HRMS) were measured on a Quattro LC Micromass unit using ESI technique.

UV-VIS EXPERIMENTS

General procedure: The UV-Vis titration was performed using Thermo Spectronic Unicam UV500 Spectrophotometer at 298K in acetonitrile. NaClO₄ were dried under high vacuum at 30-45 °C prior to use. In this case, a 2500 µL of freshly prepared 1.75×10^{-5} M solution of receptor **1** was added to a cuvette. Small aliquots of TBAX, containing **1** at constant concentration, were added and a spectrum was acquired after each addition. In the case of ion pair titration receptor 1 was firstly pretreated with one equivalent of NaClO₄ (refers to receptor).Titration isotherms for NH protons were fitted to a 1:1 binding model using HypSpec program.

Fig. S2: Dilution curve of receptor 1.

Fig. S3: Job plot (Host: Receptor 1, guest: Cl⁻)

Fig. S4. UV-Vis titration binding isotherms of receptor 1 with TBACl and TBACl in the presence of 1 equivalent of NaClO₄.

Fig. S5. UV-Vis titration binding isotherms of receptor 1 with TBA⁺CH₃COO⁻ and TBA⁺CH₃COO⁻ in the presence of 1 equivalent of NaClO₄.

Fig. S7. UV-Vis titration binding isotherms of receptor 1 with TBABr and TBABr in the presence of 1 equivalent of NaClO₄.

Fig. S8. UV-Vis titration binding isotherms of receptor 1 with TBANO₂ and TBANO₂ in the presence of 1 equivalent of NaClO₄.

Fig. S9. Representative UV-Vis Titration Spectra (Host: Receptor 3; Guest: TBACI)

Fig. S11. Representative UV-Vis Titration Spectra (Host: Receptor 2; Guest: TBACl)

Fig. S12. UV-Vis titration binding isotherms of receptor 2 with TBACl and TBACl in the presence of 1 equivalent of NaClO₄.

NMR MEASUREMENTS

Fig. S13 ¹H-¹H ROESY of receptor **1**. (Assignment of squaramide protons)

NMR Titration: The ¹H NMR titration was performed on a Bruker 300 spectrometer, at 298K in 10% DMSO-d₆ in CD₃CN . NaClO₄ were dried under high vacuum at 30–45 °C prior to use. In this case, a 500 μ L of freshly prepared 2.30 mM solution of receptor **1** was added to a 5mm NMR tube. Small aliquots of 42 mM solution of TBACl, containing **1** at 2.30 mM concentration, were added and a spectrum was acquired after each addition. In the case of ion pair titration of receptor 1 one equivalent of NaClO₄ (refers to receptor) was introduced to NMR tube. Titration isotherms for NH protons were fitted to a 1:1 binding model using the BindFit v0.5 program (http://supramolecular.org/).

Fig. S14. Variation of the ¹HNMR spectrum of receptor 1 in CD₃CN upon addition of increasing amounts of TBACl

First toluidine blue was dissolved in water and extracted several times with chloroform up to disappearance of colour in organic phase. The aqueous phase was separated and the water was evaporated *in vacuo*. Then 2 ml of 5×10^{-5} M toluidine blue solution was extracted with 2 ml suspension containing 1, 10 and 50 equivalents of receptor **1** in 20 % n-butanol in chloroform and after phase separation (two homogenous phases) the concentration of dye in aqueous phases were monitored using UV-vis measurements. Calibration curve was generated using a standard solution of toluidine blue in water and is presented below. Absorbance was taken for wavelength 626 nm, which corresponds to the maximum.

Fig. S16. Calibration curve generated using a standard solution of toluidine blue in

water

Fig. S17. Extraction of aqueous solution of toluidine blue (top layers) with solution of 20% nbutanol in chloroform and 50 equivalents of: a) 15-crown-5; b) urea based receptor (see structure below); c) receptor 2; d) receptor 3; e) receptor 1 (bottom layers).

urea based receptor investigated in extraction experiment

CRYSTAL DATA

The X-ray measurement of receptor **1** was performed at 100(2) K on a Bruker D8 Venture Photon100 CMOS diffractometer equipped with a TRIUMPH monochromator and a MoK α fine focus sealed tube (λ =0.71073 Å). A total of 2890 frames were collected with Bruker APEX2 program [1]. The frames were integrated with the Bruker SAINT software package [2] using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 40481 reflections to a maximum θ angle of 26.00° (0.81 Å resolution), of which 10005 were independent (average redundancy 4.046, completeness = 100.0%, R_{int} =1.91%, R_{sig} =1.74%) and 9686 (96.81%) were greater than $2\sigma(F^2)$. The final cell constants of a=8.8305(17) Å, b=9.1614(18) Å, c=16.760(3) Å, a=75.104(5)°, β =81.510(5)°, γ =77.835(5)°, V=1274.6(4) Å³, are based upon the refinement of the XYZ-centroids of 9916 reflections above 20 $\sigma(I)$ with 4.678° < 20 < 52.21°. Data were corrected for absorption effects using the multiscan method (SADABS) [3]. The ratio of minimum to maximum apparent transmission was 0.958. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8870 and 0.9750.

The structure was solved and refined using SHELXTL Software Package [4] using the space group *P*1, with *Z*=1 for the formula unit, $C_{45}H_{53}F_{12}N_5O_{12}S_2$ and the Flack parameter equal to 0.088(14) [5]. The final anisotropic full-matrix least-squares refinement on F^2 with 705 variables converged at *R*1=2.33%, for the observed data and *wR*2=5.59% for all data. The goodness-of-fit was 1.039. The largest peak in the final difference electron density synthesis was 0.253 e⁻/Å³ and the largest hole was -0.169 e⁻/Å³ with an RMS deviation of 0.034 e⁻/Å³. On the basis of the final model, the calculated density was 1.496 g/cm³ and *F*(000), 594 e⁻.

All non-hydrogen atoms were refined anisotropically. Most of hydrogen atoms were placed in calculated positions and refined within the riding model. Coordinates of hydrogen atoms engaged in hydrogen bonds were refined together with their isotropic temperature parameters. The temperature factors of the constrained hydrogen atoms were not refined and were set to be equal to either 1.2 or 1.5 times larger than U_{eq} of the corresponding heavy atom. The atomic scattering factors were taken from the International Tables [6]. Molecular graphics was prepared using program Diamond 3.2 [7]. Thermal ellipsoids parameters are presented at 50% probability level.

Acknowledgements

The X-ray structure was determined in the Advanced Crystal Engineering Laboratory (aceLAB) at the Chemistry Department of the University of Warsaw by dr Lukasz Dobrzycki.

ORTEP plots and packing diagrams for receptor 1

Fig. S18. ORTEP (P=50%) of receptor 1

Fig. S19. Packing in crystal of receptor 1

NMR SPECTRA

20

120

110 100

90 80 70 60

240 230 220 210 200 190 180 170 160 150 140 130

10

ppm

50 40 30 20