Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry

Microwave-Assisted Synthesis and Photophysical Studies of Novel Fluorescent N-acylhydrazone- and Semicarbazone-7-OH-Coumarin Dyes

Thiago Moreira Pereira¹, Felipe Vitório¹, Ronaldo Costa Amaral², Kassio P. S. Zanoni², Neyde Y. Murakami Iha², Arthur Eugen Kümmerle¹.

1. Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular

Diversity and Medicinal Chemistry Laboratory), Departament of Chemistry, Universidade

Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.

2. Laboratory of Photochemistry and Energy Conversion, Departamento de Química

Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo -

SP 05508-000, Brazil;

Supporting Information

Contents

Copies of ¹ H HMR, ¹³ C NMR, IV and Mass Spectra for all produc	ets2-21
HPLC analysis of 3h	21
pKa determination of 3a	22
Photophysical parameters in water (pH = 3.0) at 298 K.	23

Fig. S1. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of 1 in DMSO- d_6 .

Fig. S2. IR spectra of 1 in KBr.

Fig. S3. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of 3a in DMSO- d_6 .

Fig. S5. EM spectra of 3a.

Fig. S6. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of 3b in DMSO- d_6 .

Fig. S8. EM spectra of 3b.

Fig. S9. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of 3c in DMSO- d_6 .

Fig. S10. NOESY spectrum of **3c** in DMSO- d_6 and correlations indicating the (*E*)-isomer.

Fig. S12. EM spectra of 3c.

Fig. S13. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **3d** in DMSO-*d*₆.

Fig. S15. EM spectra of 3d.

Fig. S16. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **3e** in DMSO-*d*₆.

Fig. S17. IR spectra of 3e in KBr.

Fig. S18. EM spectra of 3e.

Fig. S19. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **3f** in DMSO- d_6 .

Fig. S21. EM spectra of 3f.

Fig. S22. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of 3g in DMSO- d_6 .

Fig. S24. EM spectra of 3g.

Fig. S26. ¹H NMR, expanded aromatic region of **3h** in DMSO- d_6 at 25 and 60°C.

Fig. S27. ¹³C NMR (125 MHz) spectrum of **3h** in DMSO- d_6 (poor quality due to low solubility).

Fig. S28. IR spectra of 3h in KBr.

Fig. S29. EM spectra of 3h.

==== Shimadzu LCsolution Analysis Report ====

	C:\Lab ^C lutio_\D 3\Dados HPLC\Marina\2016\Marco\AK-5.lcd
Acquired by	: Admin
Sample Name	: AK-5
Sample ID	
Trav#	:1
Vail #	: 64
Injection Volume	: 40 uL
Data File Name	: AK-5.lcd
Method File Name	MET 60ACN 40AGUA T10.lcm
Batch File Name	: tabela icb
Report File Name	Default Icr
Data Acquired	3/4/2016 12:11:43 PM
Data Processed	: 4/26/2016 4:56:10 PM

<Chromatogram>

pKa determination:

The spectral change from pH 5 to pH 8 is ascribed to the deprotonation of the hydroxyl group in the coumarin nucleus, as typical for other hidroxycoumarins, and lead to a well-defined isosbestic point around 375 nm. By the relationship between the pH and $\log[(A - A_f)/(A_0 - A)]$, the pKa constant for the deprotonation of the **3b** hydroxycoumarin was calculated to be 6.7.

Fig.S31. pH titrations of 3b. Absorption and emission spectrum.

Fig. S32. pKa determination of 3b considering 412nm and 351nm wavelengths.

pKa \approx 6.7.

Compound	$\phi_{ m F}{}^{ m a}$
3 a	0.048
3b	0.068
3c	0.068
3d	0.066
3h	0.065

Table S1. Photophysical parameters in water (pH = 3.0) at 298 K.

^aQuantum yields were measured by the relative method against the standard

compound ethyl-7-OH-coumarin-3-carboxylate ($\phi = 0.83$ in water) [32].

OH-Coumarins