SUPPLEMENTARY INFORMATION

Structure, luminescence and magnetic properties of an erbium(III) β -diketonate homodinuclear complex

P. Martín-Ramos,^{*a,b*} L.C.J. Pereira,^{**c*} J.T. Coutinho,^{*c*} F. Koprowiak,^{*d*} H. Bolvin,^{*d*} V. Lavín,^{*e*} I.R. Martín,^{*e*} J. Martín-Gil^{*f*} and M. Ramos-Silva^{**b*}

- ^a EPSH, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071, Huesca, Spain.
- ^b CFisUC, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra, Portugal.
- ^c C2TN, DECNentro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal.
- ^{*d*} Laboratoire de Chimie et Physique Quantiques, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France.
- ^e Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, E-38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.
- ^{*f*} Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004, Palencia, Spain.
- * Corresponding authors: manuela@pollux.fis.uc.pt, lpereira@ctn.ist.utl.pt

Contents:

- 1. Structural data
- 2. X-ray powder diffraction
- 3. Thermal analysis
- 4. Vibrational characterization
- 5. Optical characterization
- 6. Magnetic measurements
- 7. Theoretical Calculations

1. Structural data

Table S1. Selected distances and angles (Å,°)

Bond	Distance	Bonds	Angle
Er1-O1	2.305(2)	O2-Er1-O1	73.42(7)
Er1-O2	2.292(2)	O3-Er1-O4	74.70(7)
Er1-O3	2.283(2)	O5-Er1-O6	74.62(7)
Er1-O4	2.286(2)	O3-Er1-O1	118.01(6)
Er1-O5	2.290(3)	O4-Er1-O1	79.09(6)
Er1-06	2.300(2)	O5-Er1-O1	78.44(7)
Er1-N1	2.580(2)	O6-Er1-O1	149.29(8)
Er1-N2	2.583(3)	O1-Er1-N1	135.55(6)
Er-O avg.	2.293	O2-Er1-N2	70.84(7)
Er-N avg.	2.582	N1-Er1-N2	62.63(6)

Figure S1. Definition of Φ and α in the square-antiprismatic geometry, taking the first coordination sphere of Er1 as an example.

2. X-ray powder diffraction

The experimental diffractograms in Figure S2 show a background higher for low theta angles as expected from the diffuse scattering of X-rays by glass and air, a common characteristic when using rotating capillaries in a Debye-Scherrer geometry. Powder diffraction shows that all the material synthesized contains the same structure as the small single crystals used for single-crystal X-ray diffraction.

Figure S2. Experimental (*solid line*) vs. simulated (*dotted line*) X-ray powder diffraction patterns for the complex.

3. Thermal analysis

The DSC curve of $[Er_2(nd)_6(\mu-bpm)]$ complex is depicted in Figure S3.

Figure S3. DSC curve of $[Er_2(nd)_6(\mu-bpm)]$ complex.

4. Vibrational characterization

The ATR-FTIR spectrum of $[Er_2(nd)_6(bpm)]$ is shown in Figure S4.

Figure S4. ATR-FTIR spectrum of [Er₂(nd)₆(µ-bpm)].

5. Optical characterization

Figure S5. Photoluminescence spectrum in the visible region for $[Er_2(nd)_6(\mu-bpm)]$ upon excitation at 375 nm.

NIR photoluminescence spectrum

Figure S6. Scheme of the energy transfer mechanisms and emission processes.

6. Magnetic measurements

Figure S7. (*a*) In-phase and (*b*) out-of-phase components of the AC susceptibility at different frequencies in the 1.7–6.5 K temperature range for the $[Er_2(nd)_6(\mu-bpm)]$ complex. $H_{AC}=5$ Oe; $H_{DC}=0$ Oe.

Figure S8. (*a*) In-phase, and (*b*) out-of-phase components of the AC susceptibility at different frequencies in the 1.7–4.3 K temperature range for the $[Er_2(nd)_6(\mu-bpm)]$ complex. Debye fittings are shown as dashed lines. H_{AC} =5 Oe; H_{DC} =1000 Oe.

Figure S9. Arrhenius Law fitting for $[Er_2(nd)_6(\mu-bpm)]$ complex. $H_{AC}=5$ Oe, $H_{DC}=1000$ Oe.

Figure S10. Experimental and calculated values for: (*a*) temperature dependence of the χ T product; (*b*) magnetization *vs*. applied field.

7. Theoretical calculations

A local modification of MOLCAS was used to generate natural spin orbitals (NSOs) from SO-CASSCF calculations. Within the frame of the principal magnetic axes of the doublet ground state X, Y and Z, to generate the NSOs ϕ_p^u in direction u = X, Y, Z, one considers linear combinations of the ground state doublet components $|\Psi_0^u\rangle$ diagonalizing the magnetic moment operator \hat{M}_U and the NSOs ϕ_i^u are the eigen-functions of the one-particle spin-magnetization density matrices. It results that when the external magnetic field is applied along direction u, the spin density is $\frac{1}{7}$

 $\rho^{u}(r) = \sum_{i=1}^{r} n_{i} \phi_{i}(r)^{2}$ where ϕ_{i} is the NSOi with occupation n_{i} . The spin magnetization in this $\sum_{i=1}^{7} n_{i} = 2 \langle \Psi_{0}^{u} | \hat{S}_{u} | \Psi_{0}^{u} \rangle = g_{i}^{S}/2$ direction is i = 1

Table S2. Overlap integrals of the NSOs along direction 3. The total overlap interaction is $S_{AB}=1.28 \cdot 10^{-8}$.

Overlap Integrals	NSO1B	NSO2B	NSO3B	NSO4B	NSO5B	NSO6B	NSO7B
NSO1A	1.25×10-4	-5.25×10-5	2.36×10-5	-5.41×10-5	-8.65×10-5	-5.71×10-5	4.75×10-5
NSO2A	-5.25×10-5	2.23×10-5	-2.14×10 ⁻⁵	1.40×10 ⁻⁵	1.56×10-5	-2.15×10-5	-1.62×10 ⁻⁵
NSO3A	2.36×10-5	-2.14×10 ⁻⁵	-5.58×10-7	-1.84×10 ⁻⁵	-2.05×10-5	-1.72×10 ⁻⁵	2.12×10-5
NSO4A	-5.41×10 ⁻⁵	1.40×10 ⁻⁵	-1.84×10 ⁻⁵	1.91×10 ⁻⁵	2.12×10-5	2.57×10-6	-2.79×10 ⁻⁵
NSO5A	-8.65×10 ⁻⁵	1.56×10-5	-2.05×10 ⁻⁵	2.12×10-5	4.24×10-5	1.26×10-5	-7.00×10 ⁻⁶
NSO6A	-5.71×10 ⁻⁵	-2.15×10 ⁻⁵	-1.72×10 ⁻⁵	2.57×10-6	1.26×10-5	-4.75×10-5	-5.98×10-6
NSO7A	4.75×10-5	-1.62×10 ⁻⁵	2.12×10-5	-2.79×10 ⁻⁵	-7.00×10-6	-5.98×10-6	6.64×10 ⁻⁵
Occupation	0.599	0.557	0.461	0.38	0.222	0.141	0.007

Figure S11. Calculated UV-visible spectrum at SO-CASSCF level (*black*) and experimental UV-Vis diffuse reflectance spectrum (*red*).