Electronic Supplementary Information

Ambipolar Azomethines As Potential Cathodic Color Switching Materials

Marie-Hélène Tremblay, Alexandra Gellé and W.G. Skene*
Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Tables of Contents

Fig．S1 Cyclic voltammograms of 1 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s in anhydrous and deaerated dichloromethane with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte．Inset：current peak of ferrocene（一）and $\mathbf{1}$ （一）as a function of（scan rate）${ }^{1 / 2}$ ． 3
Fig．S2 Cyclic voltammograms of 2 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一） mV / s in anhydrous and deaerated dichloromethane with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte．Inset：current peak of ferrocene（一）and 2 （一）as a function of（scan rate）${ }^{1 / 2}$ ．

Fig．S3 Cyclic voltammograms of $\mathbf{3}$ measured with ferrocene as a function of scan rate in anhydrous and deaerated dichloromethane with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s．Inset：current peak of ferrocene （一）and 3 （一）as a function of（scan rate）$)^{1 / 2}$ 3
Fig．S4 Cyclic voltammograms of 4 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF 6 electrolyte．Inset：current peak of ferrocene（一）and 4 （一）as a function of（scan rate）${ }^{1 / 2}$ ．
Fig．S5 A）Spectroelectrochemistry of 2 （A）measured in dichloromethane（一）when applying a potential greater than the corresponding $\mathrm{E}_{\mathrm{ox}}($（ ）followed by $0 \mathrm{~V}($（ ）．Inset：pictures of the honeycomb electrode in the neutral（left）and oxidized（right）states．B）Spectroelectrochemistry of 3 measured in dichloromethane（一）when applying a potential more negative than the corresponding $\mathrm{E}_{\text {red }}(一)$ followed by $0 \mathrm{~V}($（ ）．Inset：pictures of the honeycomb electrode in the neutral（left）and reduced（right）states．
Fig．S6．Variation of transmission $\%$ of $\mathbf{1}$ monitored at 590 nm with applied potential switched between 0 and -1.5 V and held at each potential for 30 sec ．
Fig．S7．Variation of transmission $\%$ of 2 monitored at 635 nm with applied potential switched between 0 and +1.2 V and held at each potential for 30 sec ． 5
Fig．S8．Variation of transmission \％of $\mathbf{3}$ monitored at 735 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec ． 5

Fig．S9．Variation of transmission \％of $\mathbf{3}$ monitored at 735 nm with applied potential switched between 0 and -1.1 V ，held at each potential for 30 sec ，and switched for 20 min ．Afterwards，a potential of 0 V was applied for 10 min and the cycle repeated．
Fig．S10．Variation of transmission $\%$ of $\mathbf{4}$ monitored at 720 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec.
Fig．S11．Variation of transmission \％of 4 monitored at 590 nm with applied potential switched between 0 and -1.3 V and held at each potential for 30 sec ． 6

Fig．S1 Cyclic voltammograms of 1 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF 6 electrolyte．Inset：current peak of ferrocene（一）and $\mathbf{1}$ $\left(\right.$（）as a function of（scan rate）${ }^{1 / 2}$ ．

Fig．S2 Cyclic voltammograms of 2 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF 6 electrolyte．Inset：current peak of ferrocene（一）and 2 $(一)$ as a function of（scan rate）${ }^{1 / 2}$ ．

Fig．S3 Cyclic voltammograms of $\mathbf{3}$ measured with ferrocene as a function of scan rate in anhydrous and deaerated dichloromethane with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte $25($（）， $50($（ ）， 75 （一）， $100($（ ）， $200($（ ）， $400($（ ）， $600($（一）and $800($（一）mV／s．Inset：current peak of ferrocene $\left(\right.$ 一）and $\mathbf{3}(一)$ as a function of（scan rate）${ }^{1 / 2}$ ．

Fig．S4 Cyclic voltammograms of 4 measured with ferrocene at 25 （一）， 50 （一）， 75 （一）， 100 （一）， 200 （一）， 400 （一）， 600 （一）and 800 （一）mV／s in anhydrous and deaerated dichloromethane with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte．Inset：current peak of ferrocene（一）and 4 $\left(\right.$（）as a function of（scan rate）${ }^{1 / 2}$ ．

Fig．S5 A）Spectroelectrochemistry of 2 （A）measured in dichloromethane（一）when applying a potential greater than the corresponding $\mathrm{E}_{\mathrm{ox}}(一)$ followed by $0 \mathrm{~V}(一)$ ．Inset：pictures of the honeycomb electrode in the neutral（left）and oxidized（right）states．B）Spectroelectrochemistry of 3 measured in dichloromethane（一）when applying a potential more negative than the corresponding $\mathrm{E}_{\text {red }}(一)$ followed by $0 \mathrm{~V}(-)$ ．Inset：pictures of the honeycomb electrode in the neutral（left）and reduced（right）states．

Fig. S6. Variation of transmission \% of 1 monitored at 590 nm with applied potential switched between 0 and -1.5 V and held at each potential for 30 sec .

Fig. S7. Variation of transmission $\%$ of 2 monitored at 635 nm with applied potential switched between 0 and +1.2 V and held at each potential for 30 sec .

Fig. S8. Variation of transmission $\%$ of $\mathbf{3}$ monitored at 735 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec .

Fig. S9. Variation of transmission $\%$ of $\mathbf{3}$ monitored at 735 nm with applied potential switched between 0 and -1.1 V , held at each potential for 30 sec , and switched for 20 min . Afterwards, a potential of 0 V was applied for 10 min and the cycle repeated.

Fig. S10. Variation of transmission $\%$ of 4 monitored at 720 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec .

Fig. S11. Variation of transmission $\%$ of 4 monitored at 590 nm with applied potential switched between 0 and -1.3 V and held at each potential for 30 sec .

