The Hapticity of the Acenaphthylene Ligand in its Mononuclear, Binuclear, and Trinuclear Iron Carbonyl Complexes

Hui Wang ^{a,b}, Qiyang Wu ^{a,b}, Hongyan Wang ^{a,b*}, R. Bruce King ^{c*}

^aSchool of Physical Science and Technology,

Southwest Jiaotong University, Chengdu 610031, China

^bKey Laboratory of Advanced Technologies of Materials, Ministry of Education of China,

Chengdu 610031, China

^cDepartment of Chemistry and the Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA

R. Bruce King: e-mail: rbking@chem.uga.edu; tel.: 1-706-542-1901; fax: 1-706-542-9454

Supporting Information

Figures S1-S2: The higher energy optimized $C_{12}H_8Fe_2(CO)_n$ (*n*=6, 5, 4), and $C_{12}H_8Fe_3(CO)_n$ (*n*=9, 8) structures.

Tables S1-S30: Interatomic distances (iron-carbon distance, carbon-carbon distance, iron-carbonyl distance in Å) for $C_{12}H_8Fe(CO)_n$ (n = 4, 3, 2), $C_{12}H_8Fe_2(CO)_n$ (n = 8, 7, 6, 5, 4), and $C_{12}H_8Fe_3(CO)_n$ (n=9, 8) structures using the B3LYP, BP86 and M06-L methods.

Tables S31-S66: Theoretical Cartesian coordinates (in Å) for all of the $C_{12}H_8Fe(CO)_n$ (*n*=4, 3, 2), $C_{12}H_8Fe_2(CO)_n$ (*n* = 8, 7, 6, 5, 4), and $C_{12}H_8Fe_3(CO)_n$ (*n* = 9, 8) structures by the M06-L method.

Tables S67-S78: Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for all of the $C_{12}H_8Fe(CO)_n$ (n = 4, 3, 2), $C_{12}H_8Fe_2(CO)_n$ (n = 8, 7, 6, 5, 4), and $C_{12}H_8Fe_3(CO)_n$ (n=9, 8) structures by the M06-L method.

Fe26-3 (22.0 kcal/mol) $C_1\,, \Pi^4\,, \Pi^4$

Fe25-4 (24.8 kcal/mol) $C_1\,, \Pi^6, \Pi^4$

Fe24-4 (13.7 kcal/mol) C_1, η^5, η^6

Fe24-6 (16.7 kcal/mol) $C_2\,,\,\eta^6\,,\,\eta^6$

Fe26-4 (35.6 kcal/mol) $C_1\,,\,\eta^4,\,\eta^2$

Fe25-5 (29.8 kcal/mol) C_1, Π^5, Π^3

Fe24-5 (15.6 kcal/mol) $C_1\,, \Pi^6\,, \Pi^6$

Fe24-7 (28.5 kcal/mol) C_1 , Π^5 , Π^3

Figure S1. The higher energy optimized $C_{12}H_8Fe_2(CO)_n$ (n=6, 5, 4) structures.

Figure S2. The higher energy optimized $C_{12}H_8Fe_3(CO)_n$ (n=9, 8) structures.

		Fe14-1			Fe14-2	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe-C1	2.185	2.181	2.158	3.085	3.045	3.018
Fe-C2	2.185	2.181	2.158	4.026	4.002	3.928
Fe-C2A	3.158	3.155	3.097	4.145	4.121	4.045
Fe-C3	4.206	4.216	4.120	5.333	5.325	5.213
Fe-C4	5.310	5.324	5.190	5.740	5.735	5.616
Fe-C5	5.584	5.599	5.454	5.187	5.178	5.083
Fe-C5A	4.842	4.853	4.731	3.945	3.921	3.869
Fe-C6	5.584	5.599	5.454	3.855	3.834	3.793
Fe-C7	5.310	5.324	5.190	3.151	3.122	3.115
Fe-C8	4.206	4.216	4.120	2.290	2.241	2.271
Fe-C8A	3.158	3.155	3.097	2.354	2.298	2.316
Fe-C8B	3.586	3.584	3.509	3.259	3.222	3.188

Table S1. Iron-carbon distances (in Å) for $C_{12}H_8Fe(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

Table S2. Carbon-carbon distances (in Å) for $C_{12}H_8Fe(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

		Fe14-1			Fe14-2	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.437	1.451	1.434	1.369	1.382	1.359
C2-C2A	1.490	1.491	1.473	1.471	1.472	1.453
C2A-C3	1.385	1.396	1.376	1.395	1.406	1.385
C3-C4	1.430	1.434	1.412	1.421	1.426	1.404
C4-C5	1.391	1.401	1.378	1.398	1.407	1.385
C5-C5A	1.429	1.435	1.415	1.422	1.428	1.409
C5A-C8B	1.406	1.416	1.399	1.399	1.408	1.390
C8B-C2A	1.419	1.426	1.409	1.414	1.422	1.404
C5A-C6	1.429	1.435	1.415	1.445	1.450	1.431
C6-C7	1.391	1.401	1.378	1.376	1.385	1.363
C7-C8	1.430	1.434	1.412	1.457	1.463	1.440
C8-C8A	1.385	1.396	1.376	1.417	1.435	1.413
C8A-C8B	1.419	1.426	1.409	1.444	1.453	1.431
C8A-C1	1.490	1.491	1.473	1.484	1.485	1.467

		Fe14-1			Fe14-2	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe-C9	1.803	1.793	1.807	1.792	1.784	1.794
Fe-C10	1.821	1.802	1.818	1.830	1.811	1.829
Fe-C11	1.803	1.793	1.807	1.801	1.792	1.803
Fe-C12	1.832	1.812	1.833	1.821	1.805	1.820
C9-O9	1.159	1.173	1.148	1.161	1.174	1.151
C10-O10	1.154	1.170	1.144	1.152	1.167	1.143
C11-O11	1.159	1.173	1.148	1.159	1.172	1.149
C12-O12	1.151	1.167	1.142	1.155	1.171	1.146

Table S3. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

Table S4. Iron-carbon distances (in Å) for $C_{12}H_8Fe(CO)_3$ structures using B3LYP, BP86, and M06-L methods.

		Fe13-'	1		Fe13-	2
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe-C1	2.048	2.059	2.041	3.428	3.433	3.350
Fe-C2	2.048	2.059	2.041	4.286	4.304	4.185
Fe-C2A	2.446	2.392	2.330	4.056	4.079	3.966
Fe-C3	3.527	3.489	3.396	5.073	5.102	4.957
Fe-C4	4.323	4.252	4.105	5.118	5.146	5.005
Fe-C5	4.380	4.284	4.112	4.241	4.263	4.154
Fe-C5A	3.620	3.517	3.365	2.965	2.975	2.909
Fe-C6	4.380	4.284	4.112	2.237	2.229	2.192
Fe-C7	4.323	4.252	4.105	2.081	2.070	2.057
Fe-C8	3.527	3.489	3.396	2.092	2.085	2.067
Fe-C8A	2.446	2.392	2.330	2.259	2.265	2.215
Fe-C8B	2.496	2.396	2.289	2.882	2.894	2.826

Table S5.Carbon-carbon distances (in Å) for $C_{12}H_8Fe(CO)_3$ structures using B3LYP, BP86, and M06-L methods.

		Fe13-'	1	Fe) 13-2		
	B3LYP	BP86	M06-L	B3LYP	BP86	M06	5-L
C1-C2	1.462	1.472	1.454	1.375	1.388	1.363	1.375
C2-C2A	1.465	1.464	1.443	1.474	1.477	1.457	1.474
C2A-C3	1.397	1.409	1.392	1.411	1.420	1.400	1.411
C3-C4	1.418	1.421	1.398	1.408	1.415	1.391	1.408
C4-C5	1.399	1.410	1.388	1.418	1.425	1.404	1.418
C5-C5A	1.423	1.429	1.408	1.402	1.410	1.390	1.402
C5A-C8B	1.423	1.433	1.418	1.386	1.393	1.376	1.386
C8B-C2A	1.435	1.447	1.431	1.395	1.403	1.385	1.395
C5A-C6	1.423	1.429	1.408	1.484	1.488	1.470	1.484
C6-C7	1.399	1.410	1.388	1.436	1.449	1.430	1.436
C7-C8	1.418	1.421	1.398	1.426	1.434	1.414	1.426
C8-C8A	1.397	1.409	1.392	1.431	1.444	1.427	1.431
C8A-C8B	1.435	1.447	1.431	1.461	1.469	1.451	1.461
C8A-C1	1.465	1.464	1.443	1.473	1.473	1.455	1.473

		Fe13-'	1		Fe13-	2
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe-C9	1.826	1.810	1.828	1.791	1.770	1.789
Fe-C10	1.760	1.744	1.764	1.812	1.803	1.820
Fe-C11	1.826	1.810	1.828	1.800	1.780	1.799
С9-О9	1.156	1.172	1.146	1.158	1.175	1.149
C10-O10	1.159	1.176	1.149	1.155	1.170	1.145
C11-O11	1.156	1.172	1.146	1.158	1.174	1.148
C11-O11	1.156	1.172	1.146	1.158	1.174	

Table S6. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe(CO)_3$ structures using B3LYP, BP86, and M06-L methods.

Table S7. Iron-carbon distances (in Å) for C12H8Fe(CO)2 structures using B3LYP, BP86, and M06-L methods.

		Fe12-1			Fe12-2	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe-C1	2.052	2.055	2.028	3.853	3.859	3.761
Fe-C2	2.074	2.074	2.056	3.341	3.352	3.277
Fe-C2A	2.266	2.233	2.210	2.211	2.217	2.185
Fe-C3	3.342	3.328	3.271	2.140	2.125	2.100
Fe-C4	4.071	4.056	3.963	2.118	2.102	2.086
Fe-C5	4.068	4.049	3.940	2.137	2.125	2.101
Fe-C5A	3.278	3.253	3.158	2.261	2.237	2.206
Fe-C6	3.979	3.959	3.820	3.384	3.359	3.287
Fe-C7	3.864	3.844	3.686	4.154	4.134	4.034
Fe-C8	3.082	3.066	2.927	4.161	4.149	4.042
Fe-C8A	2.165	2.147	2.097	3.331	3.322	3.242
Fe-C8B	2.224	2.190	2.145	2.231	2.212	2.180

Table S8. Carbon-carbon distances (in Å) for $C_{12}H_8Fe(CO)_2$ structures using B3LYP, BP86, and M06-L methods.

		Fe12-1			Fe12-2	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.444	1.456	1.436	1.376	1.389	1.365
C2-C2A	1.452	1.455	1.435	1.469	1.468	1.451
C2A-C3	1.412	1.423	1.406	1.419	1.431	1.414
C3-C4	1.407	1.412	1.387	1.430	1.440	1.419
C4-C5	1.409	1.420	1.399	1.423	1.435	1.413
C5-C5A	1.414	1.420	1.398	1.443	1.450	1.433
C5A-C8B	1.424	1.433	1.418	1.411	1.422	1.405
C8B-C2A	1.432	1.445	1.427	1.431	1.442	1.424
C5A-C6	1.428	1.433	1.416	1.430	1.436	1.417
C6-C7	1.394	1.403	1.379	1.393	1.403	1.381
C7-C8	1.426	1.431	1.412	1.429	1.433	1.410
C8-C8A	1.405	1.416	1.397	1.389	1.400	1.379
C8A-C8B	1.434	1.442	1.427	1.428	1.437	1.421
C8A-C1	1.455	1.461	1.442	1.465	1.465	1.445

Table S9. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe(CO)_2$ structures using B3LYP, BP86, and M06-L methods.

		Fe12-1		Fe12-2					
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L			
Fe-C9	1.790	1.770	1.785	1.758	1.745	1.757			
Fe-C10	1.752	1.737	1.751	1.776	1.760	1.775			
C9-O9	1.162	1.179	1.153	1.166	1.181	1.156			
C10-O10	1.165	1.182	1.155	1.163	1.178	1.153			

Table S10. Iron-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_8$ structures using B3LYP, BP86, and M06-L methods.

		Fe28-1		Fe	28-2		Fe2	8-3		Fe	28-4	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe1-C1	2.165	2.179	2.167	2.198	2.199	2.173	5.915	5.907	5.805	5.745	5.739	5.621
Fe1-C2	2.169	2.179	2.162	2.168	2.165	2.142	5.300	5.284	5.199	5.160	5.145	5.050
Fe1-C2A	3.138	3.150	3.064	3.145	3.146	3.077	3.925	3.898	3.850	3.844	3.828	3.758
Fe1-C8B	3.565	3.581	3.481	3.603	3.607	3.512	3.871	3.898	3.788	3.820	3.809	3.719
Fe1-C8A	3.138	3.145	3.129	3.205	3.206	3.141	5.202	5.189	5.103	5.065	5.063	4.948
Fe1-C3	4.173	4.198	4.039	4.194	4.208	4.101	3.257	3.225	3.204	3.165	3.138	3.109
Fe1-C4	5.268	5.303	5.063	5.314	5.335	5.180	2.318	2.269	2.296	2.243	2.215	2.219
Fe1-C5	5.541	5.579	5.303	5.614	5.638	5.467	2.327	2.268	2.284	2.248	2.227	2.212
Fe1-C5A	4.806	4.840	4.610	4.884	4.903	4.760	3.278	3.237	3.212	3.202	3.191	3.134
Fe1-C6	5.543	5.572	5.307	5.708	5.737	5.568	4.313	4.287	4.234	4.153	4.153	4.092
Fe1-C7	5.276	5.307	5.077	5.472	5.497	5.355	5.487	5.478	5.391	5.314	5.328	5.229
Fe1-C8	4.182	4.202	4.093	4.314	4.330	4.239	5.910	5.911	5.808	5.725	5.741	5.617
Fe2-C3	5.887	6.020	5.230	5.941	5.922	5.830	5.469	5.464	5.808	6.076	6.024	5.873
Fe2-C4	6.119	6.074	5.609	5.493	5.475	5.390	5.902	5.904	5.812	6.144	6.094	5.978
Fe2-C5	5.422	5.212	5.065	4.296	4.264	4.216	5.302	5.291	5.223	5.281	5.216	5.160
Fe2-C5A	4.190	3.958	3.862	3.315	3.264	3.259	4.000	3.970	3.943	4.028	3.936	3.921
Fe2-C6	3.771	3.308	3.776	2.327	2.261	2.308	3.885	3.854	3.834	3.356	3.256	3.313
Fe2-C7	2.929	2.434	3.103	2.318	2.256	2.316	3.157	3.116	3.127	2.510	2.370	2.498
Fe2-C8	2.459	2.362	2.294	3.262	3.215	3.222	2.306	2.243	2.293	2.504	2.352	2.433
Fe2-C8A	3.028	3.193	2.364	3.974	3.933	3.907	2.412	2.343	2.379	3.332	3.217	3.199
Fe2-C8B	3.819	3.846	3.209	3.974	3.929	3.905	3.333	3.290	3.277	3.953	3.853	3.809

Table S11. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_8$ structures using B3LYP, BP86, and M06-L methods.

		Fe28-1			Fe28-2	2		Fe28-3	3		Fe28-4	
	B3LYP	BP86	M06-L									
C1-C2	1.439	1.452	1.430	1.438	1.451	1.436	1.368	1.381	1.358	1.373	1.387	1.362
C2-C2A	1.491	1.490	1.470	1.493	1.495	1.474	1.468	1.468	1.450	1.470	1.470	1.452
C2A-C3	1.384	1.392	1.382	1.391	1.401	1.381	1.379	1.391	1.371	1.370	1.382	1.362
C3-C4	1.431	1.440	1.404	1.422	1.426	1.405	1.445	1.450	1.427	1.461	1.464	1.441
C4-C5	1.390	1.397	1.384	1.398	1.408	1.384	1.425	1.444	1.421	1.427	1.443	1.424
C5-C5A	1.429	1.439	1.407	1.419	1.424	1.406	1.449	1.458	1.438	1.466	1.471	1.452
C5A-C8B	1.408	1.425	1.397	1.399	1.409	1.391	1.390	1.399	1.382	1.403	1.414	1.394
C8B-C2A	1.420	1.432	1.403	1.414	1.421	1.404	1.433	1.441	1.382	1.442	1.449	1.431
C5A-C6	1.428	1.421	1.429	1.455	1.464	1.440	1.436	1.442	1.423	1.405	1.410	1.395
C6-C7	1.391	1.421	1.364	1.420	1.440	1.412	1.381	1.390	1.369	1.418	1.432	1.403
C7-C8	1.440	1.451	1.437	1.454	1.460	1.436	1.448	1.456	1.431	1.431	1.447	1.419
C8-C8A	1.400	1.420	1.409	1.374	1.384	1.366	1.418	1.437	1.414	1.412	1.429	1.403
C8A-C8B	1.417	1.414	1.432	1.435	1.443	1.424	1.439	1.449	1.427	1.402	1.409	1.393
C8A-C1	1.487	1.484	1.481	1.484	1.485	1.467	1.482	1.483	1.464	1.472	1.472	1.454

Table S12. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_2(CO)_8$ structures using B3LYP, BP86, and M06-L methods.

		Fe28-1			Fe28-2			Fe28-3			Fe28-4	
	B3LYP	BP86	M06-L									
Fe1-C9	1.833	1.812	1.831	1.832	1.813	1.834	1.796	1.788	1.799	1.799	1.790	1.802
Fe1-C10	1.806	1.794	1.807	1.801	1.790	1.804	1.821	1.804	1.819	1.824	1.805	1.821
Fe1-C11	1.808	1.795	1.807	1.822	1.803	1.819	1.795	1.788	1.797	1.802	1.794	1.805
Fe1-C12	1.826	1.805	1.820	1.808	1.797	1.814	1.825	1.806	1.821	1.831	1.812	1.832
C9-O9	1.151	1.167	1.142	1.151	1.167	1.142	1.159	1.173	1.149	1.159	1.172	1.148
C10-O10	1.157	1.172	1.148	1.159	1.173	1.148	1.155	1.171	1.146	1.154	1.169	1.144
C11-O11	1.157	1.172	1.148	1.154	1.170	1.144	1.161	1.174	1.151	1.159	1.173	1.149
C12-O12	1.152	1.169	1.144	1.157	1.171	1.146	1.153	1.168	1.144	1.151	1.166	1.142
Fe2-C13	1.788	1.784	1.794	1.821	1.804	1.819	1.791	1.784	1.792	1.820	1.803	1.817
Fe2-C14	1.826	1.808	1.826	1.796	1.789	1.799	1.826	1.807	1.822	1.789	1.784	1.788
Fe2-C15	1.785	1.780	1.798	1.820	1.804	1.817	1.801	1.793	1.803	1.824	1.804	1.823
Fe2-C16	1.817	1.803	1.817	1.794	1.787	1.791	1.821	1.805	1.820	1.788	1.782	1.787
C13-O13	1.163	1.176	1.151	1.156	1.171	1.146	1.161	1.174	1.151	1.156	1.172	1.147
C14-O14	1.155	1.169	1.143	1.160	1.173	1.149	1.152	1.168	1.144	1.163	1.176	1.153
C15-O15	1.164	1.177	1.150	1.154	1.168	1.146	1.158	1.172	1.148	1.154	1.170	1.145
C16-O16	1.157	1.172	1.146	1.161	1.174	1.152	1.155	1.171	1.146	1.162	1.176	1.153

		Fe27-1	
	B3LYP	BP86	M06-L
Fe1-C1	2.058	2.052	2.038
Fe1-C2	2.070	2.093	2.062
Fe1-C2A	2.368	2.516	2.428
Fe1-C8B	2.346	2.331	2.251
Fe1-C8A	2.347	2.240	2.224
Fe1-C3	3.468	3.584	3.489
Fe1-C4	4.171	4.217	4.099
Fe1-C5	4.186	4.164	4.041
Fe1-C5A	3.432	3.370	3.271
Fe2-C5A	4.162	3.981	3.933
Fe2-C6	5.323	5.114	5.020
Fe2-C7	5.983	5.640	5.515
Fe2-C8	5.783	5.303	5.187
Fe2-C8A	4.770	4.226	4.152
Fe2-C8B	3.836	3.402	3.376

Table S13. Iron-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_7$ structures using B3LYP, BP86, and M06-L methods.

		Fe27-2			Fe27-3		Fe27-4			
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	
Fe1-C1	2.199	2.187	2.179	3.402	3.400	3.338	5.995	5.883	5.776	
Fe1-C2	2.169	2.156	2.149	4.248	4.255	4.164	5.332	5.255	5.188	
Fe1-C2A	3.171	3.158	3.091	4.012	4.024	3.933	4.056	3.947	3.944	
Fe1-C8B	3.647	3.632	3.525	2.859	2.869	2.803	4.126	3.936	3.914	
Fe1-C8A	3.268	3.255	3.192	2.244	2.250	2.206	5.419	5.253	5.160	
Fe1-C3	4.226	4.224	4.112	5.045	2.250	4.957	3.291	3.233	3.283	
Fe1-C4	5.341	5.342	5.165	5.087	5.109	5.004	2.474	2.338	2.457	
Fe1-C5	5.658	5.656	5.455	4.195	4.210	4.131	2.669	2.397	2.484	
Fe1-C5A	4.925	4.916	4.744	2.942	2.952	2.893	3.585	3.332	3.334	
Fe1-C6	5.656	5.644	5.450	2.225	2.232	2.193	4.637	4.383	4.311	
Fe1-C7	5.652	5.654	5.532	2.079	2.071	2.058	5.954	5.724	5.638	
Fe1-C8	4.564	4.565	4.515	2.085	2.077	2.063	6.307	6.111	6.017	
Fe2-C3	5.240	3.692	5.185	2.394	2.289	2.352	5.159	5.226	5.108	
Fe2-C4	5.242	5.268	5.198	2.416	2.318	2.394	5.220	5.288	5.163	
Fe2-C5	4.303	4.323	4.279	3.335	3.271	3.286	4.310	4.355	4.261	
Fe2-C5A	2.987	2.997	2.965	4.002	3.944	3.918	2.986	3.003	2.948	
Fe2-C6	2.202	2.197	2.174	5.356	5.315	5.260	2.237	2.229	2.195	
Fe2-C7	2.059	2.051	2.039	6.009	6.004	5.910	2.078	2.066	2.051	
Fe2-C8	2.102	2.092	2.059	5.938	5.935	5.829	2.085	2.083	2.064	
Fe2-C8A	2.313	2.314	2.219	5.123	5.082	5.001	2.254	2.278	2.229	
Fe2-C8B	2.952	2.961	2.911	3.894	3.831	3.791	2.902	2.933	2.874	

		Fe27-1			Fe27	7-2		Fe27-	3		Fe27-4	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.459	1.465	1.450	1.441	1.457	1.438	1.378	1.389	1.366	1.374	1.387	1.363
C2-C2A	1.449	1.472	1.450	1.492	1.495	1.479	1.468	1.471	1.451	1.473	1.474	1.455
C2A-C3	1.421	1.431	1.411	1.407	1.416	1.397	1.434	1.447	1.423	1.399	1.403	1.387
C3-C4	1.442	1.466	1.440	1.408	1.415	1.392	1.426	1.446	1.418	1.426	1.442	1.412
C4-C5	1.392	1.386	1.366	1.417	1.425	1.403	1.440	1.451	1.424	1.428	1.447	1.420
C5-C5A	1.428	1.449	1.429	1.401	1.408	1.390	1.387	1.394	1.377	1.413	1.433	1.408
C5A-C8B	1.428	1.432	1.418	1.389	1.397	1.377	1.401	1.411	1.391	1.377	1.378	1.363
C8B-C2A	1.437	1.459	1.439	1.393	1.402	1.384	1.384	1.391	1.375	1.406	1.420	1.398
C5A-C6	1.413	1.409	1.390	1.486	1.490	1.473	1.481	1.481	1.465	1.483	1.487	1.469
C6-C7	1.408	1.428	1.406	1.441	1.454	1.436	1.437	1.449	1.430	1.438	1.452	1.433
C7-C8	1.409	1.402	1.381	1.426	1.434	1.413	1.425	1.435	1.413	1.424	1.432	1.412
C8-C8A	1.405	1.430	1.410	1.428	1.441	1.431	1.433	1.445	1.428	1.435	1.446	1.430
C8A-C8B	1.436	1.444	1.428	1.461	1.467	1.449	1.460	1.467	1.448	1.460	1.468	1.448
C8A-C1	1.457	1.455	1.436	1.493	1.494	1.477	1.470	1.472	1.453	1.475	1.474	1.457

Table S14. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_7$ structures using B3LYP, BP86, and M06-L methods.

Table S15. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_2(CO)_7$ structures using B3LYP, BP86, and M06-L methods.

		Fe27-1			Fe27-3	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe1-C9	1.823	1.796	1.818	1.794	1.772	1.791
Fe1-C10	1.826	1.808	1.827	1.812	1.801	1.819
Fe1-C11	1.772	1.755	1.772	1.803	1.782	1.802
С9-О9	1.154	1.172	1.146	1.157	1.174	1.148
C10-O10	1.154	1.172	1.146	1.154	1.170	1.144
C11-O11	1.156	1.174	1.148	1.156	1.173	1.147
Fe2-C12	1.789	1.805	1.819	1.790	1.785	1.790
Fe2-C13	1.815	1.784	1.791	1.819	1.803	1.817
Fe2-C14	1.784	1.800	1.813	1.789	1.784	1.789
Fe2-C15	1.818	1.782	1.788	1.821	1.804	1.819
C12-O12	1.163	1.171	1.146	1.162	1.175	1.153
C13-O13	1.158	1.176	1.153	1.157	1.172	1.147
C14-O14	1.165	1.173	1.148	1.162	1.175	1.153
C15-O15	1.157	1.176	1.153	1.154	1.169	1.146

		Fe27-	2	Fe27-4					
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L			
Fe1-C9	1.828	1.810	1.832	1.788	1.784	1.790			
Fe1-C10	1.800	1.790	1.803	1.818	1.802	1.815			
Fe1-C11	1.822	1.804	1.818	1.783	1.779	1.783			
Fe1-C12	1.807	1.798	1.809	1.827	1.808	1.825			
C9-O9	1.151	1.166	1.142	1.163	1.175	1.153			
C10-O10	1.159	1.173	1.149	1.157	1.172	1.147			
C11-O11	1.154	1.170	1.145	1.164	1.176	1.154			
C12-O12	1.157	1.171	1.148	1.154	1.169	1.145			
Fe2-C13	1.790	1.771	1.794	1.794	1.772	1.791			
Fe2-C14	1.808	1.799	1.812	1.811	1.803	1.820			
Fe2-C15	1.799	1.779	1.797	1.802	1.779	1.798			
C13-O13	1.158	1.175	1.148	1.157	1.174	1.147			
C14-O14	1.156	1.171	1.146	1.154	1.170	1.145			
C15-O15	1.157	1.173	1.148	1.157	1.173	1.147			

		Fe26-1			Fe26-2			Fe26-3	5		Fe26-4	
	B3LYP	BP86	M06-L									
Fe1-C1	4.789	4.687	4.657	2.094	2.127	2.082	4.303	4.278	4.191	4.630	4.593	4.576
Fe1-C2	4.046	3.934	3.931	1.971	2.031	2.040	3.464	3.438	3.383	4.374	4.368	4.366
Fe1-C2A	2.818	2.715	2.719	2.505	2.207	2.180	2.271	2.252	2.216	3.106	3.103	3.114
Fe1-C8B	3.200	3.138	3.102	2.961	2.395	2.239	2.837	2.814	2.749	2.479	2.418	2.426
Fe1-C8A	4.333	4.274	4.212	2.913	2.535	2.330	4.026	3.995	3.906	3.686	3.615	3.585
Fe1-C3	2.192	2.157	2.147	3.495	3.259	3.230	2.098	2.072	2.062	3.008	3.027	3.008
Fe1-C4	2.001	2.015	1.995	4.509	4.086	3.977	2.072	2.085	2.071	2.186	2.193	2.166
Fe1-C5	2.186	2.189	2.159	4.815	4.241	4.074	2.220	2.300	2.242	2.062	2.064	2.050
Fe1-C5A	2.963	2.954	2.897	4.175	3.574	3.400	2.910	2.947	2.887	2.232	2.180	2.169
Fe2-C5A	3.458	3.466	3.348	2.974	3.063	3.015	2.940	2.409	2.320	3.550	3.453	3.380
Fe2-C6	4.166	4.169	4.051	2.161	2.135	2.128	2.334	2.117	2.093	3.649	3.634	3.635
Fe2-C7	4.084	4.073	3.988	2.035	1.968	1.941	2.041	2.064	2.058	3.054	3.073	3.104
Fe2-C8	3.318	3.295	3.257	2.146	2.265	2.185	2.273	2.262	2.233	2.125	2.140	2.169
Fe2-C8A	2.244	2.216	2.196	2.421	2.992	3.048	3.057	3.010	2.956	2.052	2.038	2.024
Fe2-C8B	2.297	2.292	2.202	2.987	3.337	3.343	3.248	2.966	2.884	2.778	2.644	2.519

Table S16. Iron-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_6$ structures using B3LYP, BP86, and M06-L methods.

Table S17. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_6$ structures using B3LYP, BP86, and M06-L methods.

	Fe26-1				Fe26-2			Fe26-3		Fe26-4			
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	
C1-C2	1.456	1.462	1.445	1.468	1.462	1.442	1.383	1.395	1.373	1.367	1.380	1.358	
C2-C2A	1.448	1.457	1.436	1.482	1.457	1.434	1.470	1.476	1.455	1.456	1.455	1.440	
C2A-C3	1.415	1.427	1.410	1.420	1.437	1.416	1.429	1.444	1.427	1.360	1.368	1.347	
C3-C4	1.446	1.446	1.433	1.398	1.396	1.376	1.426	1.437	1.416	1.472	1.479	1.459	
C4-C5	1.444	1.454	1.437	1.424	1.438	1.414	1.440	1.445	1.426	1.446	1.457	1.441	
C5-C5A	1.459	1.466	1.443	1.396	1.401	1.384	1.474	1.468	1.457	1.424	1.431	1.414	
C5A-C8B	1.427	1.432	1.420	1.396	1.429	1.423	1.403	1.442	1.426	1.428	1.451	1.434	
C8B-C2A	1.449	1.455	1.437	1.402	1.440	1.431	1.454	1.453	1.437	1.476	1.490	1.469	
C5A-C6	1.395	1.402	1.383	1.484	1.472	1.443	1.409	1.441	1.426	1.455	1.458	1.441	
C6-C7	1.427	1.436	1.413	1.447	1.466	1.447	1.441	1.433	1.413	1.364	1.375	1.354	
C7-C8	1.391	1.397	1.376	1.430	1.459	1.454	1.441	1.452	1.432	1.463	1.467	1.445	
C8-C8A	1.425	1.436	1.416	1.415	1.419	1.419	1.451	1.477	1.461	1.441	1.453	1.434	
C8A-C8B	1.427	1.440	1.426	1.460	1.450	1.423	1.373	1.370	1.351	1.464	1.461	1.438	
C8A-C1	1.450	1.455	1.435	1.488	1.466	1.441	1.465	1.468	1.447	1.477	1.477	1.461	

Table S18. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_2(CO)_6$ structures using B3LYP, BP86, and M06-L methods.

		Fe26-1			Fe26-2			Fe26-3			Fe26-4	
	B3LYP	BP86	M06-L									
Fe1-C9	1.774	1.764	1.764	1.816	1.782	1.807	1.794	1.772	1.788	1.821	1.814	1.835
Fe1-C10	1.787	1.772	1.772	1.755	1.766	1.789	1.805	1.780	1.799	1.774	1.756	1.770
Fe1-C11	1.808	1.799	1.799	1.828	1.799	1.822	1.816	1.801	1.817	1.813	1.803	1.813
C9-O9	1.163	1.178	1.178	1.158	1.169	1.142	1.156	1.174	1.148	1.158	1.173	1.147
C10-O10	1.163	1.178	1.178	1.160	1.174	1.146	1.155	1.172	1.147	1.159	1.174	1.149
C11-O11	1.162	1.177	1.177	1.156	1.168	1.142	1.153	1.170	1.145	1.156	1.170	1.147
Fe2-C12	1.812	1.789	1.789	1.785	1.756	1.778	1.787	1.777	1.794	1.828	1.810	1.824
Fe2-C13	1.823	1.807	1.807	1.802	1.794	1.798	1.816	1.802	1.816	1.816	1.790	1.805
Fe2-C14	1.781	1.764	1.764	1.801	1.776	1.783	1.765	1.767	1.786	1.755	1.737	1.754
C12-O12	1.154	1.171	1.171	1.159	1.179	1.154	1.164	1.177	1.152	1.157	1.173	1.150
C13-O13	1.153	1.170	1.170	1.158	1.177	1.157	1.162	1.173	1.149	1.157	1.175	1.149
C14-O14	1.156	1.173	1.173	1.158	1.178	1.154	1.164	1.177	1.151	1.160	1.178	1.152

		Fo25_1	
	B3LYP	BP86	M06-L
Fe1-C1	2.128	2.108	2.077
Fe1-C2	2.128	2.108	2.077
Fe1-C2A	2.151	2.158	2.121
Fe1-C8B	2.124	2.130	2.106
Fe1-C8A	2.151	2.158	2.121
Fe1-C3	3.189	3.202	3.134
Fe1-C4	3.773	3.800	3.728
Fe1-C5	3.681	3.714	3.659
Fe1-C5A	3.037	3.065	3.033
Fe2-C5	2.257	2.272	2.236
Fe2-C5A	2.082	2.071	2.070
Fe2-C6	2.257	2.272	2.236
Fe2-C7	3.225	3.220	3.163
Fe2-C8	3.748	3.723	3.666
Fe2-C8A	3.498	3.455	3.432
Fe2-C8B	2.761	2.710	2.707

Table S19. Iron-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_5$ structures using B3LYP, BP86, and M06-L methods.

		Fe25-2			Fe25-3			Fe25-4			Fe25-5	
	B3LYP	BP86	M06-L									
Fe1-C1	2.119	2.125	2.085	3.853	3.847	3.766	3.886	3.882	3.811	2.083	2.084	2.058
Fe1-C2	2.114	2.117	2.078	3.490	3.493	3.423	3.393	3.381	3.327	2.037	2.055	2.027
Fe1-C2A	2.232	2.232	2.179	2.379	2.396	2.368	2.223	2.209	2.183	2.167	2.166	2.135
Fe1-C8B	2.143	2.161	2.098	2.175	2.183	2.169	2.156	2.143	2.111	2.239	2.209	2.160
Fe1-C8A	2.129	2.172	2.106	3.209	3.218	3.178	3.321	3.310	3.254	2.335	2.265	2.255
Fe1-C3	3.302	3.304	3.216	2.251	2.235	2.200	2.168	2.159	2.137	3.163	3.204	3.140
Fe1-C4	3.951	3.963	3.841	2.143	2.121	2.105	2.106	2.102	2.080	3.937	3.970	3.882
Fe1-C5	3.874	3.901	3.767	2.172	2.146	2.124	2.174	2.166	2.145	4.058	4.063	3.974
Fe1-C5A	3.072	3.105	2.998	2.212	2.224	2.194	2.225	2.214	2.191	3.369	3.348	3.278
Fe2-C5A	2.983	2.952	2.926	3.382	3.345	3.354	2.953	2.963	2.911	2.990	2.995	2.935
Fe2-C6	2.215	2.221	2.180	3.563	3.551	3.532	2.219	2.219	2.182	2.192	2.187	2.157
Fe2-C7	2.073	2.062	2.050	3.047	3.049	3.023	2.077	2.068	2.054	2.030	2.038	2.026
Fe2-C8	2.190	2.129	2.159	2.171	2.199	2.178	2.096	2.094	2.078	2.216	2.171	2.160
Fe2-C8A	2.711	2.537	2.674	2.094	2.093	2.097	2.261	2.298	2.243	2.727	2.678	2.620
Fe2-C8B	3.079	2.968	3.031	2.675	2.633	2.643	2.880	2.900	2.838	3.139	3.110	3.041

		Fe25-1	
	B3LYP	BP86	M06-L
C1-C2	1.433	1.445	1.424
C2-C2A	1.443	1.454	1.435
C2A-C3	1.449	1.448	1.433
C3-C4	1.370	1.384	1.358
C4-C5	1.462	1.461	1.444
C5-C5A	1.431	1.440	1.425
C5A-C8B	1.422	1.427	1.411
C8B-C2A	1.431	1.443	1.425
C5A-C6	1.431	1.440	1.425
C6-C7	1.462	1.461	1.444
C7-C8	1.370	1.384	1.358
C8-C8A	1.449	1.448	1.433
C8A-C8B	1.431	1.443	1.425
C8A-C1	1.443	1.454	1.435

Table S20. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_5$ structures using B3LYP, BP86, and M06-L methods.

		Fe25-2	1	F	e25-3			Fe25-4			Fe25-	5
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.442	1.446	1.434	1.397	1.411	1.395	1.372	1.385	1.361	1.449	1.456	1.440
C2-C2A	1.453	1.462	1.439	1.436	1.434	1.409	1.473	1.474	1.456	1.454	1.461	1.440
C2A-C3	1.433	1.439	1.423	1.419	1.429	1.412	1.416	1.425	1.406	1.422	1.433	1.415
C3-C4	1.387	1.396	1.372	1.430	1.441	1.420	1.434	1.444	1.423	1.399	1.403	1.380
C4-C5	1.435	1.440	1.419	1.422	1.432	1.411	1.438	1.447	1.427	1.423	1.435	1.413
C5-C5A	1.387	1.397	1.377	1.426	1.441	1.424	1.411	1.421	1.402	1.396	1.400	1.380
C5A-C8B	1.419	1.425	1.411	1.423	1.434	1.415	1.403	1.414	1.396	1.417	1.423	1.408
C8B-C2A	1.419	1.430	1.416	1.439	1.452	1.438	1.414	1.427	1.410	1.422	1.433	1.417
C5A-C6	1.471	1.471	1.455	1.450	1.447	1.433	1.484	1.485	1.469	1.464	1.474	1.454
C6-C7	1.439	1.451	1.431	1.369	1.385	1.361	1.437	1.449	1.431	1.447	1.456	1.440
C7-C8	1.417	1.429	1.409	1.463	1.461	1.441	1.424	1.432	1.411	1.431	1.434	1.415
C8-C8A	1.448	1.454	1.437	1.438	1.443	1.428	1.430	1.440	1.424	1.419	1.441	1.421
C8A-C8B	1.448	1.457	1.439	1.429	1.434	1.418	1.463	1.466	1.450	1.450	1.457	1.442
C8A-C1	1.429	1.447	1.421	1.457	1.460	1.439	1.472	1.471	1.454	1.450	1.452	1.434

Table S21. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_2(CO)_5$ structures using B3LYP, BP86, and M06-L methods.

		Fe25-1	
	B3LYP	BP86	M06-L
Fe1-C9	1.770	1.756	1.770
Fe1-C10	1.770	1.756	1.770
C9-O9	1.160	1.177	1.152
C10-O10	1.160	1.177	1.152
Fe2-C11	1.792	1.780	1.793
Fe2-C12	1.792	1.780	1.793
Fe2-C13	1.782	1.766	1.780
C11-O11	1.159	1.175	1.150
C12-O12	1.159	1.175	1.150
C13-O13	1.159	1.176	1.151

		Fe25-2			Fe25-3			Fe25-4			Fe25-5	
	B3LYP	BP86	M06-L									
Fe1-C9	1.780	1.765	1.775	1.763	1.755	1.768	1.757	1.748	1.759	1.803	1.778	1.796
Fe1-C10	1.768	1.751	1.763	1.766	1.754	1.767	1.762	1.753	1.762	1.764	1.741	1.757
C9-O9	1.158	1.173	1.151	1.162	1.176	1.152	1.167	1.182	1.157	1.159	1.176	1.151
C10-O10	1.160	1.176	1.152	1.161	1.176	1.151	1.168	1.182	1.158	1.161	1.179	1.153
Fe2-C11	1.799	1.847	1.807	1.799	1.783	1.794	1.794	1.774	1.793	1.775	1.766	1.779
Fe2-C12	1.797	1.778	1.796	1.806	1.790	1.807	1.809	1.800	1.815	1.811	1.802	1.816
Fe2-C13	1.772	1.747	1.774	1.767	1.751	1.766	1.802	1.781	1.800	1.792	1.776	1.791
C11-O11	1.167	1.191	1.154	1.158	1.174	1.150	1.157	1.174	1.148	1.162	1.177	1.152
C12-O12	1.158	1.175	1.149	1.160	1.177	1.152	1.155	1.171	1.146	1.160	1.175	1.150
C13-O13	1.160	1.177	1.151	1.161	1.178	1.152	1.156	1.173	1.148	1.161	1.177	1.151

		Fe24-1			Fe24-2	2		Fe24-3	6
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe1-C1	2.138	2.109	2.090	2.143	2.116	2.077	2.146	2.129	2.094
Fe1-C2	2.056	2.057	2.012	2.129	2.102	2.064	2.155	2.128	2.094
Fe1-C2A	2.059	2.067	2.025	2.124	2.109	2.072	2.149	2.135	2.102
Fe1-C8B	2.130	2.106	2.082	2.108	2.096	2.067	2.125	2.124	2.087
Fe1-C8A	2.248	2.182	2.184	2.156	2.151	2.108	2.159	2.157	2.119
Fe1-C3	3.023	3.070	2.964	3.148	3.140	3.084	3.161	3.141	3.095
Fe1-C4	3.735	3.790	3.672	3.713	3.720	3.655	3.719	3.718	3.660
Fe1-C5	3.578	3.661	3.512	3.607	3.624	3.557	3.609	3.631	3.565
Fe1-C5A	3.035	3.036	2.966	2.966	2.981	2.931	3.019	3.043	2.979
Fe2-C3	2.229	2.180	2.187	3.681	3.665	3.610	3.591	3.590	3.556
Fe2-C4	2.082	2.083	2.058	3.186	3.183	3.130	3.090	3.093	3.064
Fe2-C5	2.230	2.297	2.202	2.255	2.266	2.221	2.149	2.163	2.143
Fe2-C5A	2.986	2.916	2.921	2.102	2.087	2.078	2.073	2.050	2.046
Fe2-C6	4.134	4.063	4.033	2.294	2.304	2.263	2.355	2.322	2.277
Fe2-C7	5.055	4.928	4.928	3.252	3.230	3.188	3.245	3.181	3.158
Fe2-C8	5.117	4.976	4.994	3.761	3.721	3.681	3.708	3.645	3.634
Fe2-C8A	4.222	4.118	4.132	3.503	3.460	3.433	3.435	3.390	3.383
Fe2-C8B	3.106	3.006	3.047	2.773	2.725	2.722	2.683	2.643	2.652

Table S22. Iron-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

		Fe24-4	•		Fe24-5			Fe24-6			Fe24-7	
	B3LYP	BP86	M06-L									
Fe1-C1	2.065	2.063	2.045	3.933	3.935	3.877	3.895	3.895	3.830	2.128	2.141	2.109
Fe1-C2	2.070	2.073	2.052	3.390	3.376	3.341	3.365	3.359	3.313	2.037	2.038	2.021
Fe1-C2A	2.208	2.195	2.157	2.213	2.194	2.177	2.206	2.190	2.165	2.246	2.196	2.166
Fe1-C8B	2.223	2.184	2.129	2.232	2.220	2.187	2.219	2.198	2.160	2.316	2.285	2.216
Fe1-C8A	2.226	2.180	2.143	3.405	3.410	3.354	3.373	3.368	3.311	2.354	2.364	2.317
Fe1-C3	3.172	3.176	3.093	2.172	2.149	2.134	2.181	2.160	2.143	3.307	3.262	3.201
Fe1-C4	3.957	3.953	3.847	2.100	2.090	2.075	2.109	2.103	2.088	4.072	4.031	3.931
Fe1-C5	4.049	4.033	3.928	2.106	2.102	2.079	2.097	2.093	2.073	4.147	4.115	4.005
Fe1-C5A	3.308	3.275	3.192	2.280	2.271	2.243	2.257	2.240	2.206	3.430	3.405	3.319
Fe2-C3	4.184	4.189	4.125	4.176	4.172	4.100	4.171	4.175	4.103	5.440	5.475	5.415
Fe2-C4	4.157	4.151	4.098	4.168	4.156	4.093	4.163	4.163	4.093	5.230	5.263	5.195
Fe2-C5	3.368	3.349	3.317	3.458	3.444	3.402	3.447	3.440	3.390	4.155	4.175	4.117
Fe2-C5A	2.236	2.213	2.190	2.290	2.277	2.242	2.257	2.240	2.206	2.953	2.955	2.921
Fe2-C6	2.139	2.117	2.105	2.135	2.126	2.106	2.097	2.093	2.073	2.152	2.129	2.107
Fe2-C7	2.126	2.112	2.097	2.117	2.101	2.090	2.109	2.103	2.088	1.973	1.960	1.947
Fe2-C8	2.128	2.118	2.094	2.145	2.130	2.113	2.181	2.160	2.143	2.239	2.220	2.183
Fe2-C8A	2.232	2.246	2.211	2.215	2.223	2.191	2.206	2.190	2.165	2.988	2.983	2.947
Fe2-C8B	2.224	2.209	2.163	2.267	2.255	2.212	2.219	2.198	2.160	3.230	3.236	3.199

Table S23. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_2(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

		Fe24-1			Fe24-2	2		Fe24-3	6
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.448	1.450	1.439	1.423	1.431	1.422	1.425	1.434	1.425
C2-C2A	1.437	1.455	1.432	1.441	1.455	1.440	1.432	1.448	1.432
C2A-C3	1.451	1.452	1.439	1.445	1.443	1.437	1.449	1.448	1.439
C3-C4	1.418	1.432	1.410	1.359	1.373	1.358	1.356	1.370	1.356
C4-C5	1.439	1.443	1.430	1.457	1.455	1.448	1.462	1.459	1.450
C5-C5A	1.466	1.451	1.448	1.425	1.435	1.426	1.441	1.448	1.436
C5A-C8B	1.423	1.436	1.415	1.423	1.427	1.419	1.416	1.421	1.415
C8B-C2A	1.447	1.452	1.438	1.427	1.439	1.427	1.428	1.437	1.427
C5A-C6	1.387	1.407	1.377	1.425	1.435	1.424	1.410	1.422	1.414
C6-C7	1.434	1.426	1.417	1.449	1.447	1.440	1.441	1.442	1.435
C7-C8	1.388	1.410	1.374	1.360	1.376	1.360	1.367	1.381	1.364
C8-C8A	1.431	1.428	1.418	1.439	1.436	1.430	1.435	1.438	1.431
C8A-C8B	1.423	1.437	1.420	1.426	1.437	1.425	1.428	1.440	1.428
C8A-C1	1.444	1.456	1.431	1.437	1.451	1.438	1.438	1.447	1.434

		Fe24-4	1		Fe24-5			Fe24-6			Fe24-7	
	B3LYP	BP86	M06-L									
C1-C2	1.441	1.454	1.434	1.375	1.389	1.366	1.375	1.388	1.365	1.463	1.467	1.450
C2-C2A	1.452	1.458	1.438	1.462	1.463	1.443	1.461	1.463	1.443	1.449	1.455	1.434
C2A-C3	1.403	1.414	1.395	1.415	1.427	1.409	1.412	1.425	1.407	1.426	1.436	1.418
C3-C4	1.424	1.428	1.408	1.429	1.439	1.417	1.430	1.441	1.418	1.391	1.398	1.374
C4-C5	1.394	1.405	1.381	1.436	1.447	1.427	1.432	1.442	1.422	1.427	1.435	1.414
C5-C5A	1.427	1.432	1.414	1.438	1.445	1.429	1.440	1.448	1.431	1.394	1.402	1.382
C5A-C8B	1.429	1.438	1.424	1.429	1.443	1.426	1.444	1.466	1.449	1.427	1.432	1.419
C8B-C2A	1.438	1.445	1.431	1.440	1.449	1.433	1.444	1.452	1.436	1.428	1.441	1.426
C5A-C6	1.440	1.450	1.430	1.444	1.450	1.433	1.440	1.448	1.431	1.464	1.470	1.450
C6-C7	1.424	1.438	1.416	1.423	1.436	1.415	1.432	1.442	1.422	1.428	1.444	1.426
C7-C8	1.426	1.434	1.415	1.427	1.435	1.413	1.430	1.441	1.418	1.443	1.455	1.441
C8-C8A	1.434	1.447	1.430	1.419	1.432	1.414	1.412	1.425	1.407	1.442	1.446	1.430
C8A-C8B	1.456	1.477	1.463	1.438	1.447	1.431	1.444	1.452	1.436	1.441	1.447	1.430
C8A-C1	1.450	1.452	1.432	1.463	1.462	1.444	1.461	1.463	1.443	1.428	1.439	1.420

Table S24. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_2(CO)_4$ structures using B3LYP, BP86, and M06-L methods.

		Fe24-1			Fe24-2		Fe24-3			
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	
Fe1-C9	2.022	1.981	2.004	1.787	1.766	1.773	1.768	1.756	1.765	
Fe1-C10	1.775	1.760	1.767	2.051	2.010	2.039	1.769	1.759	1.764	
C9-O9	1.194	1.202	1.187	1.146	1.165	1.154	1.149	1.165	1.153	
C10-O10	1.161	1.179	1.154	1.181	1.196	1.187	1.151	1.167	1.157	
Fe2-C11	1.772	1.750	1.775	1.785	1.766	1.782	1.791	1.761	1.775	
Fe2-C12	1.798	1.764	1.796	1.792	1.777	1.788	1.785	1.769	1.784	
C11-O11	1.161	1.178	1.152	1.147	1.165	1.152	1.146	1.167	1.153	
C12-O12	1.158	1.176	1.149	1.144	1.160	1.149	1.147	1.166	1.154	

		Fe24-4	•		Fe24-5			Fe24-6			Fe24-7		
	B3LYP	BP86	M06-L										
Fe1-C9	1.785	1.767	1.778	1.751	1.735	1.747	1.754	1.737	1.752	1.797	1.766	1.788	
Fe1-C10	1.752	1.737	1.753	1.776	1.761	1.773	1.776	1.759	1.771	1.774	1.747	1.770	
C9-O9	1.163	1.179	1.154	1.165	1.181	1.156	1.164	1.180	1.155	1.155	1.175	1.148	
C10-O10	1.164	1.181	1.155	1.163	1.179	1.154	1.163	1.179	1.154	1.157	1.176	1.149	
Fe2-C11	1.758	1.741	1.754	1.761	1.747	1.759	1.776	1.759	1.771	1.766	1.753	1.766	
Fe2-C12	1.775	1.761	1.774	1.776	1.760	1.774	1.754	1.737	1.752	1.695	1.700	1.703	
C11-O11	1.164	1.180	1.155	1.165	1.180	1.155	1.163	1.179	1.154	1.165	1.182	1.156	
C12-O12	1.163	1.178	1.153	1.162	1.178	1.153	1.164	1.180	1.155	1.204	1.214	1.191	

Table S25. Iron-carbon distances (in Å) for $C_{12}H_8Fe_3(CO)_9$ structures using B3LYP, BP86, and M06-L methods.

		Fe39-1			Fe39-2		F	e39-3	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe1-C1	2.084	2.081	2.066	2.115	2.122	2.093	3.227	3.178	3.123
Fe1-C2	2.078	2.080	2.057	2.114	1.991	1.976	2.431	2.337	2.316
Fe1-C2A	2.314	2.302	2.261	2.922	2.224	2.191	1.978	1.977	1.963
Fe1-C8B	2.269	2.316	2.220	3.280	2.609	2.538	2.328	2.359	2.269
Fe1-C8A	2.242	2.256	2.212	2.990	2.724	2.667	3.134	3.129	3.034
Fe1-C3	3.501	3.498	3.422	4.014	3.384	3.318	2.195	2.246	2.208
Fe2-C3	2.172	2.159	2.135	3.055	2.202	2.174	3.052	3.035	3.004
Fe2-C4	1.958	1.978	1.954	2.289	2.055	2.042	2.113	2.132	2.107
Fe2-C5	2.177	2.172	2.138	2.042	2.066	2.050	2.125	2.137	2.111
Fe2-C5A	2.995	2.892	2.902	2.409	2.259	2.208	3.012	2.972	2.940
Fe3-C6	2.196	2.173	2.148	2.191	2.110	2.083	3.820	3.831	3.767
Fe3-C7	2.018	2.028	2.017	2.065	1.982	1.974	3.254	3.261	3.199
Fe3-C8	2.135	2.133	2.117	2.077	2.224	2.221	2.376	2.327	2.312
Fe3-C8A	2.862	2.843	2.792	2.233	2.815	2.789	2.128	2.075	2.089
Fe3-C1	4.055	4.040	3.983	3.509	4.120	4.063	2.275	2.217	2.221

		Fe39-1			Fe39-	2	F	Fe39-3	
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.457	1.461	1.446	1.437	1.476	1.461	1.470	1.492	1.472
C2-C2A	1.451	1.458	1.439	1.483	1.457	1.443	1.422	1.432	1.414
C2A-C3	1.448	1.461	1.440	1.398	1.490	1.474	1.420	1.425	1.411
C3-C4	1.462	1.471	1.455	1.426	1.454	1.436	1.487	1.483	1.467
C4-C5	1.452	1.449	1.441	1.447	1.429	1.408	1.447	1.456	1.441
C5-C5A	1.438	1.442	1.428	1.435	1.458	1.443	1.460	1.455	1.437
C5A-C8B	1.455	1.454	1.442	1.398	1.454	1.439	1.426	1.433	1.419
C8B-C2A	1.416	1.424	1.407	1.404	1.411	1.390	1.440	1.446	1.436
C5A-C6	1.424	1.444	1.421	1.496	1.501	1.487	1.406	1.422	1.401
C6-C7	1.436	1.441	1.421	1.442	1.466	1.448	1.411	1.410	1.390
C7-C8	1.453	1.460	1.443	1.420	1.449	1.430	1.418	1.435	1.410
C8-C8A	1.451	1.456	1.438	1.439	1.421	1.400	1.421	1.429	1.412
C8A-C8B	1.429	1.436	1.419	1.464	1.443	1.426	1.455	1.459	1.444
C8A-C1	1.431	1.445	1.422	1.501	1.472	1.451	1.431	1.443	1.424

Table S26. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_3(CO)_9$ structures using B3LYP, BP86, and M06-L methods.

Table S27. Iron-carbonyl distances (in Å) for $C_{12}H_8Fe_3(CO)_9$ structures using B3LYP, BP86, and M06-L methods.

		Fe39-1			Fe39-2			Fe39-3	6
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
Fe1-C9	1.815	1.797	1.815	1.794	1.783	1.823	1.799	1.783	1.800
Fe1-C10	1.818	1.797	1.820	1.777	1.758	1.799	1.789	1.778	1.794
Fe1-C11	1.791	1.773	1.794	1.765	1.807	1.775	1.826	1.798	1.818
C9-O9	1.151	1.168	1.143	1.156	1.174	1.147	1.155	1.172	1.146
C10-O10	1.150	1.167	1.142	1.162	1.174	1.149	1.156	1.173	1.147
C11-O11	1.154	1.172	1.146	1.163	1.170	1.149	1.154	1.172	1.145
Fe2-C12	1.787	1.774	1.789	1.774	1.782	1.801	1.830	1.812	1.833
Fe2-C13	1.780	1.766	1.779	1.771	1.777	1.798	1.762	1.733	1.751
Fe2-C14	1.798	1.795	1.800	1.823	1.799	1.813	1.825	1.807	1.825
C12-O12	1.162	1.177	1.152	1.163	1.172	1.146	1.155	1.171	1.146
C13-O13	1.162	1.177	1.153	1.163	1.172	1.147	1.158	1.175	1.149
C14-O14	1.165	1.178	1.156	1.160	1.168	1.144	1.155	1.171	1.146
Fe3-C15	1.795	1.777	1.794	1.798	1.759	1.771	1.778	1.776	1.785
Fe3-C16	1.808	1.797	1.812	1.806	1.788	1.795	1.744	1.739	1.739
Fe3-C17	1.781	1.771	1.786	1.807	1.781	1.796	1.799	1.796	1.809
C15-O15	1.159	1.175	1.149	1.155	1.177	1.152	1.161	1.175	1.151
C16-O16	1.160	1.175	1.150	1.154	1.174	1.152	1.188	1.203	1.183
C17-O17	1.160	1.175	1.150	1.155	1.175	1.151	1.164	1.178	1.154

		Fe38-1			Fe38-2		Fe38-3			
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	
Fe1-C5A	2.729	2.646	2.542	2.718	2.626	2.445	2.981	2.954	2.916	
Fe1-C6	2.206	2.165	2.142	2.223	2.172	2.126	2.217	2.227	2.182	
Fe1-C7	2.006	2.020	2.012	2.011	2.023	2.024	2.075	2.062	2.051	
Fe1-C8	2.147	2.161	2.137	2.157	2.162	2.159	2.194	2.129	2.163	
Fe2-C1	2.145	2.135	2.099	2.143	2.142	2.091	2.119	2.126	2.082	
Fe2-C2	2.107	2.103	2.070	2.127	2.118	2.065	2.120	2.123	2.084	
Fe2-C2A	2.193	2.209	2.165	2.204	2.219	2.114	2.216	2.218	2.167	
Fe2-C8B	2.152	2.174	2.109	2.134	2.158	2.061	2.136	2.156	2.095	
Fe2-C8A	2.253	2.254	2.201	2.236	2.234	2.171	2.126	2.171	2.103	
Fe3-C3	2.149	2.132	2.113	2.137	2.115	2.144	2.640	2.453	2.478	
Fe3-C4	2.107	2.091	2.087	2.094	2.088	2.072	2.183	2.082	2.152	
Fe3-C5	2.306	2.301	2.287	2.288	2.302	2.235	3.212	3.187	3.207	

Table S28. Iron-carbon distances (in Å) for $C_{12}H_8Fe_3(CO)_8$ structures using B3LYP, BP86, and M06-L methods.

Table S29. Carbon-carbon distances (in Å) for $C_{12}H_8Fe_3(CO)_8$ structures using B3LYP, BP86, and M06-L methods.

		5-20 4						F -20	<u></u>
		re38-1			гезо-2			гезо-	3
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L
C1-C2	1.459	1.465	1.450	1.445	1.451	1.446	1.442	1.445	1.434
C2-C2A	1.429	1.442	1.423	1.437	1.451	1.422	1.448	1.457	1.433
C2A-C3	1.447	1.449	1.436	1.445	1.450	1.440	1.441	1.450	1.433
C3-C4	1.429	1.441	1.423	1.416	1.429	1.412	1.396	1.415	1.388
C4-C5	1.422	1.433	1.411	1.440	1.448	1.424	1.442	1.445	1.424
C5-C5A	1.444	1.447	1.432	1.445	1.444	1.445	1.381	1.392	1.372
C5A-C8B	1.445	1.448	1.435	1.443	1.449	1.435	1.425	1.433	1.417
C8B-C2A	1.432	1.440	1.424	1.435	1.442	1.423	1.419	1.430	1.417
C5A-C6	1.414	1.433	1.413	1.412	1.431	1.414	1.470	1.468	1.452
C6-C7	1.439	1.440	1.420	1.438	1.439	1.416	1.438	1.450	1.430
C7-C8	1.449	1.457	1.440	1.450	1.458	1.438	1.416	1.428	1.408
C8-C8A	1.464	1.467	1.454	1.466	1.471	1.461	1.448	1.454	1.438
C8A-C8B	1.418	1.427	1.409	1.405	1.415	1.400	1.444	1.454	1.436
C8A-C1	1.424	1.435	1.415	1.438	1.447	1.422	1.430	1.447	1.421

	Fe38-1				Fe38-2			Fe38-3		
	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	B3LYP	BP86	M06-L	
Fe1-C9	1.798	1.781	1.798	1.799	1.780	1.798	1.777	1.749	1.778	
Fe1-C10	1.806	1.795	1.808	1.809	1.798	1.811	1.799	1.844	1.806	
Fe1-C11	1.776	1.795	1.782	1.776	1.766	1.784	1.799	1.779	1.798	
C9-O9	1.160	1.175	1.150	1.160	1.175	1.149	1.158	1.176	1.150	
C10-O10	1.160	1.175	1.150	1.160	1.174	1.149	1.163	1.190	1.151	
C11-O11	1.160	1.175	1.150	1.160	1.175	1.149	1.157	1.174	1.149	
Fe2-C12	1.789	1.774	1.786	1.781	1.763	1.773	1.776	1.762	1.772	
Fe2-C13	1.780	1.761	1.778	1.783	1.767	1.774	1.769	1.754	1.764	
C12-O12	1.157	1.174	1.150	1.156	1.173	1.153	1.158	1.173	1.152	
C13-O13	1.156	1.173	1.148	1.157	1.174	1.152	1.159	1.175	1.151	
Fe3-C14	1.790	1.774	1.793	1.867	1.897	1.803	1.792	1.785	1.800	
Fe3-C15	1.761	1.749	1.763	1.764	1.751	1.781	1.783	1.768	1.773	
Fe3-C16	1.881	1.908	1.877	1.782	1.763	1.795	1.770	1.747	1.755	
C14-O14	1.157	1.174	1.149	1.183	1.196	1.150	1.164	1.177	1.153	
C15-O15	1.159	1.175	1.151	1.159	1.175	1.150	1.166	1.180	1.157	
C16-O16	1.185	1.196	1.171	1.158	1.175	1.150	1.159	1.174	1.151	

 $\label{eq:solution} \textbf{Table S30}. Iron-carbonyl \ distances \ (in \ \text{\AA}) \ for \ C_{12}H_8Fe_3(CO)_8 \ structures \ using \ B3LYP, \ BP86, \ and \ M06-L \ methods.$

Center	Atomic	Atomic	С	Coordinates(Ang	stroms)
Number	Number	Туре	х	у	Z
1	6	0	-0.816734	1.114431	1.163447
2	6	0	-0.516856	1.850510	0.000000
3	6	0	-0.816734	1.114431	-1.163447
4	6	0	-0.556440	1.690634	-2.385033
5	1	0	-0.757372	1.171381	-3.314705
6	6	0	-0.005624	2.990919	-2.415391
7	6	0	0.296279	3.698171	-1.272196
8	6	0	0.050448	3.128844	0.000000
9	6	0	0.296279	3.698171	1.272196
10	6	0	-0.005624	2.990919	2.415391
11	1	0	0.190482	3.445161	3.379086
12	1	0	0.720095	4.692737	1.346043
13	1	0	0.190482	3.445161	-3.379086
14	1	0	0.720095	4.692737	-1.346043
15	6	0	-1.350711	-0.183261	-0.716913
16	6	0	-1.350711	-0.183261	0.716913
17	1	0	-2.076192	-0.721621	-1.311578
18	1	0	-2.076192	-0.721621	1.311578
19	6	0	-0.556440	1.690634	2.385033
20	1	0	-0.757372	1.171381	3.314705
21	26	0	0.109416	-1.601871	0.000000
22	6	0	1.432799	-0.333785	0.000000
23	6	0	0.808713	-2.322363	-1.502693
24	6	0	-1.223218	-2.837963	0.000000
25	6	0	0.808713	-2.322363	1.502693
26	8	0	2.300152	0.408442	0.000000
27	8	0	1.261750	-2.789667	-2.448584
28	8	0	-2.069114	-3.608443	0.000000
29	8	0	1.261750	-2.789667	2.448584

Table S31. The theoretical Cartesian coordinates (in Å) for the structure Fe14-1 of $C_{12}H_8Fe(CO)_4$ using M06-L method.

Center	Atomic	Atomic	C	Coordinates(Ang	stroms)
Number	Number	Туре	х	у	Z
1	6	0	-0.444572	0.491805	-1.050096
2	6	0	-1.686254	0.159896	-0.419857
3	6	0	-2.361342	1.332757	-0.046054
4	6	0	-3.613721	1.206266	0.53119
5	1	0	-4.185831	2.072898	0.84034
6	6	0	-4.158824	-0.078684	0.68161′
7	6	0	-3.510156	-1.216995	0.233369
8	6	0	-2.240165	-1.114004	-0.367717
9	6	0	-1.482839	-2.159594	-0.985815
10	6	0	-0.309628	-1.879159	-1.620715
11	1	0	0.230909	-2.676871	-2.115514
12	1	0	-1.862658	-3.174287	-0.975636
13	1	0	-5.136671	-0.178704	1.136432
14	1	0	-3.987664	-2.185185	0.326279
15	6	0	-1.530714	2.442457	-0.482938
16	6	0	-0.420488	1.957325	-1.098216
17	1	0	-1.763156	3.487794	-0.342678
18	1	0	0.368955	2.549227	-1.537764
19	6	0	0.259443	-0.557809	-1.680852
20	1	0	1.003144	-0.362819	-2.442983
21	26	0	1.435579	-0.042797	0.192080
22	6	0	0.421292	-1.121053	1.265902
23	6	0	1.415937	1.222951	1.476130
24	6	0	2.492170	1.020340	-0.840135
25	6	0	2.743158	-1.269676	0.236323
26	8	0	-0.165412	-1.796641	1.976638
27	8	0	1.449215	2.012401	2.30966
28	8	0	3.179540	1.676941	-1.479372
29	8	0	3.607673	-2 022735	0 33364

Table S32. The theoretical Cartesian coordinates (in Å) for the structure **Fe14-2** of $C_{12}H_8Fe(CO)_4$ using M06-L method.

Center	Atomic	Atomic	С	Coordinates(Ang	stroms)
Number	Number	Туре	Х	у	Z
1	6	0	1.108021	-0.577396	1.181179
2	6	0	0.536241	-1.147389	0.000000
3	6	0	1.108021	-0.577396	-1.181179
4	6	0	0.817032	-1.168662	-2.406857
5	1	0	1.232359	-0.788642	-3.330305
6	6	0	-0.065105	-2.253667	-2.414137
7	6	0	-0.632320	-2.800159	-1.270879
8	6	0	-0.306140	-2.287994	0.000000
9	6	0	-0.632320	-2.800159	1.270879
10	6	0	-0.065105	-2.253667	2.414137
11	1	0	-0.308634	-2.705025	3.369087
12	1	0	-1.280816	-3.663374	1.352805
13	1	0	-0.308634	-2.705025	-3.369087
14	1	0	-1.280816	-3.663374	-1.352805
15	6	0	1.804037	0.602755	-0.727025
16	6	0	1.804037	0.602755	0.727025
17	1	0	2.397724	1.259240	-1.343695
18	1	0	2.397724	1.259240	1.343695
19	6	0	0.817032	-1.168662	2.406857
20	1	0	1.232359	-0.788642	3.330305
21	26	0	-0.045561	1.066451	0.000000
22	6	0	-1.225482	1.088711	-1.396386
23	6	0	0.249591	2.805222	0.000000
24	6	0	-1.225482	1.088711	1.396386
25	8	0	-1.955753	1.106235	-2.279076
26	8	0	0.480378	3.931261	0.000000
27	8	0	-1.955753	1.106235	2.279076

Table S33. The theoretical Cartesian coordinates (in Å) for the structure **Fe13-1** of $C_{12}H_8Fe(CO)_3$ using M06-L method.

Table S34. The theoretical Cartesian coordinates (in Å) for the structure Fe13-2 of $C_{12}H_8Fe(CO)_3$ using M06-L

i (dillott	rumber	rype	X	У	Z
1	6	0	-0.436789	1.107484	1.107484
2	6	0	-1.515093	0.186852	0.186852
3	6	0	-2.590939	0.856705	0.856705
4	6	0	-3.666191	0.075026	0.075026
5	1	0	-4.539563	0.516705	0.516705
6	6	0	-3.580168	-1.305928	-1.305928
7	6	0	-2.453505	-1.947897	-1.947897
8	6	0	-1.377194	-1.177616	-1.177616
9	6	0	-0.024576	-1.550180	-1.550180
10	6	0	0.701121	-0.684151	-0.684151
11	1	0	1.449692	-1.071737	-1.071737
12	1	0	0.254138	-2.597890	-2.597890
13	1	0	-4.406352	-1.917708	-1.917708
14	1	0	-2.422261	-3.029771	-3.029771
15	6	0	-2.200346	2.259464	2.259464
16	6	0	-0.940782	2.409542	2.409542
17	1	0	-2.814524	3.063431	3.063431
18	1	0	-0.408761	3.344057	3.344057
19	6	0	0.516744	0.711024	0.711024
20	1	0	1.083544	1.415272	1.415272
21	26	0	1.259302	-0.090309	-0.090309
22	6	0	2.693074	-1.158911	-1.158911
23	6	0	0.514212	-0.431042	-0.431042
24	6	0	2.255927	1.361779	1.361779
25	8	0	3.590364	-1.875449	-1.875449
26	8	0	0.018925	-0.644748	-0.644748
27	8	0	2.851868	2.314295	2.314295

Center Atomic Atomic Coordinates(Angstroms) Number Number Type Х v Z 1.477187 1 6 0 0.200112 -0.781153 2 0 0.962731 0.284785 6 -0.602556 3 0 0.373587 -0.805089 -1.309724 6 4 -1.255812 0 1.030900 -2.046445 6 5 0 -2.908796 -1.782451 1 0.644047 6 6 0 2.195732 -2.141044 -0.508035 7 6 0 2.743057 -1.073251 0.211540 8 0.199715 0 2.126924 0.181866 6 9 0.904627 6 0 2.488340 1.355511 10 6 0 1.677517 2.468941 0.848711 1.939316 3.330133 1.451590 11 1 0 12 1 0 3.370815 1.531844 1.357144 13 1 0 2.705448 -3.096201 -0.470131 -1.225452 14 1 0 3.648007 0.786776 15 0 -0.303872 -1.854935 6 -0.855039 16 6 0 -0.941945 1.102428 -1.577551 17 1 0 -1.548816 -0.861507 -2.464167 18 1 0 -1.730733 1.757634 -1.909929 19 6 0 0.510655 2.550037 0.058105 20 1 0 -0.083995 3.453947 0.057516 21 0 -1.029008 0.062808 0.160989 26 22 0 -0.765898 -1.100067 1.488806 6 23 0 -2.770535 0.023543 6 0.337664 24 8 0 -0.582667 -1.904929 2.294011 25 8 0 -3.923169 -0.005957 0.413091

Table S35. The theoretical Cartesian coordinates (in Å) for the structure **Fe12-1** of $C_{12}H_8Fe(CO)_2$ using M06-L method.

Center Atomic Atomic Coordinates(Angstroms) Number Number Type Х Z v 1 6 0 -2.256834 0.325378 -0.250688 2 0 0.514502 6 -1.142959 -0.112783 3 0 -0.575802 0.989011 1.215485 6 4 0 6 0.635818 0.795837 1.917836 5 0 1.598494 2.446145 1 1.131045 6 6 0 1.147526 -0.526330 1.977947 7 6 0 0.583513 -1.590073 1.237921 8 0 -1.413061 0.469133 6 -0.612461 9 -2.327941 6 0 -1.273337 -0.387767 10 6 0 -2.383586 -1.920863 -1.100970-2.635915 -1.749599 11 1 0 -2.873662 12 1 0 -0.908261 -3.343644 -0.474628 13 1 0 2.076323 -0.703137 2.503692 14 1 0 1.108463 -2.536002 1.204766 15 2.132306 0.877625 6 0 -1.402294 0.032274 16 6 0 -2.3980141.734886 17 1 0 -1.246776 3.133872 1.249456 18 1 0 -3.162053 -0.380116 2.377224 19 -1.049892 6 0 -2.887648 -0.605374 20 1 0 -3.740559-0.337874 -1.662007 21 0 0.051072 -0.017700 26 0.964821 22 0 2.494140 -0.518770 -0.668638 6 23 0 1.385590 -1.187052 6 1.026661 24 8 0 3.508117 -0.876924 -1.092786 25 8 0 1.092110 2.255952 -1.940188

Table S36. The theoretical Cartesian coordinates (in Å) for the structure **Fe12-2** of $C_{12}H_8Fe(CO)_2$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	Х	У	Z	
1	6	0	0.733861	1.487526	1.121221	
2	6	0	-0.197311	1.439720	0.072518	
3	6	0	-0.404718	0.094858	-0.371961	
4	6	0	-1.163410	-0.090673	-1.544323	
5	1	0	-1.105934	-1.011890	-2.110070	
6	6	0	-1.687532	1.075398	-2.200287	
7	6	0	-1.490124	2.343560	-1.738657	
8	6	0	-0.704927	2.572698	-0.567347	
9	6	0	-0.346257	3.815741	-0.013626	
10	6	0	0.510539	3.871587	1.071559	
11	1	0	0.775564	4.839024	1.480093	
12	1	0	-0.730506	4.730464	-0.448658	
13	1	0	-2.260317	0.922993	-3.106969	
14	1	0	-1.910549	3.186448	-2.273606	
15	6	0	0.546494	-0.736461	0.401073	
16	6	0	1.203743	0.113329	1.345804	
17	1	0	0.358375	-1.782574	0.588685	
18	1	0	1.530224	-0.222731	2.320760	
19	6	0	1.081575	2.721524	1.638206	
20	1	0	1.799819	2.814991	2.443877	
21	26	0	2.643353	-0.563392	-0.117954	
22	6	0	2.346618	0.871792	-1.215011	
23	6	0	2.824522	-1.611360	-1.578565	
24	6	0	2.946234	-1.999776	0.958116	
25	6	0	4.192799	0.192002	0.425106	
26	8	0	2.229266	1.748210	-1.938175	
27	8	0	2.957248	-2.273630	-2.507233	
28	8	0	3.137244	-2.899940	1.637296	
29	8	0	5.185193	0.666387	0.753848	
30	26	0	-2.550569	-0.740453	0.163733	
31	6	0	-3.155039	0.948482	0.504160	
32	6	0	-2.306819	-0.992160	1.927599	
33	6	0	-2.033905	-2.450977	-0.168068	
34	6	0	-4.135296	-1.112281	-0.590097	
35	8	0	-3.577308	1.983281	0.744694	
36	8	0	-2.198570	-1.179451	3.057416	
37	8	0	-1.729373	-3.536142	-0.376451	
38	8	0	-5.183118	-1.371703	-0.990003	

 Table S37. The theoretical Cartesian coordinates (in Å) for the structure Fe28-1 of C₁₂H₈Fe₂(CO)<sub>8 using M06-L

 method

</sub>

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Type	Х	у	Z	
1	6	0	0.411578	0.216600	-1.581769	
2	6	0	0.201373	1.439753	-0.882928	
3	6	0	1.419988	2.076892	-0.597573	
4	6	0	1.386215	3.295891	0.050324	
5	1	0	2.293768	3.832364	0.299826	
6	6	0	0.136325	3.843324	0.383329	
7	6	0	-1.057959	3.215894	0.072801	
8	6	0	-1.047857	1.976944	-0.591313	
9	6	0	-2.184708	1.255749	-1.103177	
10	6	0	-1.984543	0.081228	-1.861087	
11	1	0	-2.779255	-0.271070	-2.504882	
12	1	0	-3.105033	1.812080	-1.225317	
13	1	0	0.106982	4.799445	0.891261	
14	1	0	-1.999930	3.686355	0.329924	
15	6	0	2.491914	1.204191	-1.110752	
16	6	0	1.865006	0.046936	-1.685786	
17	1	0	3.419001	1.621603	-1.479754	
18	1	0	2.291016	-0.507618	-2.510723	
19	6	0	-0.670412	-0.456239	-2.074274	
20	1	0	-0.564458	-1.368330	-2.649662	
21	26	0	-3.029881	-0.510133	0.119067	
22	6	0	-4.660063	0.085019	-0.426979	
23	6	0	-3.174623	0.357660	1.688497	
24	6	0	-1.465769	-1.293783	0.610015	
25	6	0	-3.674101	-2.175292	-0.022312	
26	8	0	-5.696520	0.443144	-0.760227	
27	8	0	-3.274778	0.863590	2.715749	
28	8	0	-0.535810	-1.888315	0.918700	
29	8	0	-4.122857	-3.235953	-0.036129	
30	26	0	2.960733	-0.490625	0.112471	
31	6	0	4.320090	-0.894553	-1.026036	
32	6	0	2.556409	-2.246389	0.324193	
33	6	0	1.658420	0.038055	1.291263	
34	6	0	4.171055	0.056514	1.333029	
35	8	0	5.176623	-1.139499	-1.743744	
36	8	0	2.320987	-3.358899	0.466054	
37	8	0	0.924135	0.393230	2.090873	
38	8	0	4.951436	0.381266	2.110292	

 Table S38. The theoretical Cartesian coordinates (in Å) for the structure Fe28-2 of $C_{12}H_8Fe_2(CO)_8$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	Х	у	Z	
1	6	0	1.696530	1.208066	-1.022712	
2	6	0	0.271022	1.156354	-0.983295	
3	6	0	-0.231886	2.333663	-0.361872	
4	6	0	-1.584934	2.553508	-0.366918	
5	1	0	-2.015963	3.461450	0.037650	
6	6	0	-2.443659	1.602923	-0.995197	
7	6	0	-1.926583	0.445598	-1.636840	
8	6	0	-0.503216	0.247913	-1.678902	
9	6	0	0.190834	-0.714539	-2.464253	
10	6	0	1.556399	-0.675277	-2.557716	
11	1	0	2.063501	-1.384754	-3.200066	
12	1	0	-0.367542	-1.456752	-3.022387	
13	1	0	-3.445990	1.929830	-1.236652	
14	1	0	-2.521802	-0.049327	-2.393570	
15	6	0	0.926384	3.124079	0.006590	
16	6	0	2.053037	2.487051	-0.406022	
17	1	0	0.892594	4.079551	0.508347	
18	1	0	3.060921	2.861306	-0.301249	
19	6	0	2.360090	0.278286	-1.855665	
20	1	0	3.369666	0.451466	-2.204655	
21	26	0	-3.030948	-0.240153	0.241195	
22	6	0	-4.515880	-0.452782	-0.788243	
23	6	0	-4.064842	0.390639	1.568232	
24	6	0	-1.579530	0.011927	1.311833	
25	6	0	-2.741515	-2.015073	0.193294	
26	8	0	-5.453100	-0.589083	-1.432807	
27	8	0	-4.738618	0.715929	2.442507	
28	8	0	-0.697607	0.176380	2.022292	
29	8	0	-2.614262	-3.156954	0.220598	
30	26	0	2.858022	-0.413527	0.273197	
31	6	0	4.387763	0.570271	0.197845	
32	6	0	3.846704	-1.895418	0.080476	
33	6	0	1.376115	-1.469724	0.354713	
34	6	0	2.540851	0.206354	1.936695	
35	8	0	5.367088	1.163854	0.159154	
36	8	0	4.488382	-2.850711	0.052149	
37	8	0	0.474012	-2.170556	0.420361	
38	8	0	2.396428	0.553639	3.021512	

Table S39. The theoretical Cartesian coordinates (in Å) for the structure **Fe28-3** of $C_{12}H_8Fe_2(CO)_8$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	у	Z
1	6	0	0.675537	2.058849	-0.601626
2	6	0	0.013128	0.964638	0.039350
3	6	0	-1.062178	1.442389	0.785508
4	6	0	-1.878209	0.511502	1.446106
5	1	0	-2.605234	0.827154	2.182711
6	6	0	-1.548979	-0.863305	1.317799
7	6	0	-0.445136	-1.301686	0.570327
8	6	0	0.366970	-0.377496	-0.086540
9	6	0	1.531217	-0.654994	-0.908340
10	6	0	2.183556	0.427267	-1.564202
11	1	0	2.777242	0.219891	-2.445097
12	1	0	1.613890	-1.648295	-1.331915
13	1	0	-2.070309	-1.584840	1.932656
14	1	0	-0.222212	-2.361266	0.525764
15	6	0	-1.073289	2.887030	0.619069
16	6	0	-0.047198	3.252155	-0.199220
17	1	0	-1.796575	3.555602	1.063030
18	1	0	0.191916	4.258792	-0.507344
19	6	0	1.750809	1.790856	-1.392664
20	1	0	2.282546	2.572133	-1.924221
21	26	0	3.497288	-0.335705	0.053804
22	6	0	4.229904	-1.484049	-1.154656
23	6	0	3.447823	-1.646226	1.289914
24	6	0	2.796578	0.833892	1.277088
25	6	0	5.012381	0.645913	0.029946
26	8	0	4.692561	-2.206030	-1.911890
27	8	0	3.434698	-2.471570	2.087980
28	8	0	2.414616	1.554587	2.075949
29	8	0	5.997758	1.235436	0.057480
30	26	0	-3.554498	-0.363655	-0.085455
31	6	0	-2.520870	0.019162	-1.537336
32	6	0	-4.529186	1.099864	-0.405190
33	6	0	-4.609582	-0.760386	1.339430
34	6	0	-3.923847	-1.966497	-0.786858
35	8	0	-1.888056	0.252911	-2.462861
36	8	0	-5.226565	1.976071	-0.680273
37	8	0	-5.280141	-1.010755	2.235580
38	8	0	-4.257422	-2.946786	-1.294481

 Table S40. The theoretical Cartesian coordinates (in Å) for the structure Fe28-4 of $C_{12}H_8Fe_2(CO)_8$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	х	У	Z	
1	6	0	-1.226656	0.797697	-1.300460	
2	6	0	-0.587717	0.821691	-0.023521	
3	6	0	0.106927	-0.412267	0.230658	
4	6	0	0.902098	-0.501269	1.392311	
5	1	0	1.153829	-1.465599	1.813749	
6	6	0	0.869722	0.630202	2.282535	
7	6	0	0.219526	1.801913	2.019682	
8	6	0	-0.495313	1.976091	0.794134	
9	6	0	-1.068350	3.132543	0.278600	
10	6	0	-1.643912	3.133188	-1.003721	
11	1	0	-2.036296	4.069062	-1.383272	
12	1	0	-1.031111	4.054278	0.845412	
13	1	0	1.418148	0.537185	3.212592	
14	1	0	0.284679	2.626264	2.718336	
15	6	0	-0.499830	-1.336485	-0.706827	
16	6	0	-1.219599	-0.577979	-1.711375	
17	1	0	-0.238876	-2.378838	-0.810437	
18	1	0	-1.568027	-0.962487	-2.656559	
19	6	0	-1.734200	2.012462	-1.805326	
20	1	0	-2.186790	2.064618	-2.786224	
21	26	0	-2.300968	-0.638266	0.014812	
22	6	0	-3.754359	0.452930	0.039857	
23	6	0	-2.220648	-1.042895	1.794470	
24	6	0	-3.236969	-2.052341	-0.500338	
25	8	0	-4.650434	1.166500	0.061548	
26	8	0	-2.187574	-1.341177	2.900067	
27	8	0	-3.806879	-2.985270	-0.850805	
28	26	0	2.607497	-0.264071	-0.111002	
29	6	0	2.457973	-0.196070	-1.891485	
30	6	0	2.664365	-2.075045	-0.174031	
31	6	0	4.208022	-0.235349	0.692098	
32	6	0	2.556837	1.552759	-0.051542	
33	8	0	2.409837	-0.153299	-3.043124	
34	8	0	2.696600	-3.222137	-0.213253	
35	8	0	5.281191	-0.210512	1.112283	
36	8	0	2.563156	2.699100	-0.040087	

 Table S41. The theoretical Cartesian coordinates (in Å) for the structure Fe27-1 of $C_{12}H_8Fe_2(CO)_7$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	Х	у	Z	
1	6	0	-0.551586	0.242185	-1.205497	
2	6	0	-0.469147	1.593459	-0.689450	
3	6	0	0.809608	2.114431	-0.778548	
4	6	0	0.996869	3.419003	-0.316304	
5	1	0	1.970845	3.893146	-0.327625	
6	6	0	-0.106214	4.106060	0.183478	
7	6	0	-1.393520	3.550926	0.232249	
8	6	0	-1.584875	2.251495	-0.221307	
9	6	0	-2.799145	1.429804	-0.361735	
10	6	0	-2.906069	0.582468	-1.516285	
11	1	0	-3.858965	0.370417	-1.982807	
12	1	0	-3.726721	1.795209	0.064406	
13	1	0	0.033004	5.115473	0.550538	
14	1	0	-2.219020	4.139936	0.613484	
15	6	0	1.665028	1.045851	-1.336844	
16	6	0	0.843034	-0.117228	-1.532473	
17	1	0	2.522712	1.271787	-1.956398	
18	1	0	1.032437	-0.834463	-2.321187	
19	6	0	-1.730797	-0.070071	-1.953084	
20	1	0	-1.743340	-0.774864	-2.774415	
21	26	0	-2.218273	-0.639004	-0.034994	
22	6	0	-1.702085	-0.364000	1.680336	
23	6	0	-1.611349	-2.306349	-0.318348	
24	6	0	-3.870016	-1.237232	0.326832	
25	8	0	-1.474251	-0.244509	2.797559	
26	8	0	-1.187366	-3.348080	-0.547810	
27	8	0	-4.935167	-1.594285	0.565180	
28	26	0	2.293893	-0.465092	0.055508	
29	6	0	3.224194	-1.344279	-1.235692	
30	6	0	1.784251	-2.019785	0.828065	
31	6	0	1.452033	0.503363	1.362680	
32	6	0	3.847340	0.147757	0.734609	
33	8	0	3.811210	-1.898616	-2.046961	
34	8	0	1.477284	-2.980935	1.374874	
35	8	0	1.040478	1.128819	2.225024	
36	8	0	4.847513	0.507943	1.170204	

 Table S42. The theoretical Cartesian coordinates (in Å) for the structure Fe27-2 of C₁₂H₈Fe₂(CO)₇ using M06-L

 method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Type	Х	У	Z
1	6	0	1.532190	1.091417	-0.632313
2	6	0	0.472866	0.310985	-0.026842
3	6	0	-0.426608	1.129062	0.615241
4	6	0	-1.496937	0.502642	1.312080
5	1	0	-2.068063	1.051972	2.048550
6	6	0	-1.534169	-0.914811	1.309863
7	6	0	-0.537242	-1.704885	0.668679
8	6	0	0.491809	-1.080020	0.000892
9	6	0	1.708503	-1.613421	-0.616088
10	6	0	2.328877	-0.909534	-1.695191
11	1	0	2.919302	-1.433656	-2.434982
12	1	0	1.908260	-2.676276	-0.543263
13	1	0	-2.186720	-1.416649	2.011355
14	1	0	-0.584336	-2.783253	0.755663
15	6	0	0.051030	2.485618	0.421096
16	6	0	1.205498	2.469892	-0.308472
17	1	0	-0.434051	3.374941	0.798557
18	1	0	1.767988	3.335876	-0.624833
19	6	0	2.271262	0.502693	-1.703048
20	1	0	2.770265	1.084718	-2.465813
21	26	0	3.235563	-0.162941	-0.005035
22	6	0	2.777365	-0.277060	1.751433
23	6	0	4.368631	1.237288	0.027433
24	6	0	4.584173	-1.339664	-0.058889
25	8	0	2.451583	-0.346366	2.846092
26	8	0	5.060243	2.151779	0.051719
27	8	0	5.428230	-2.116567	-0.091624
28	26	0	-3.296860	-0.086933	-0.083170
29	6	0	-2.196538	-0.123911	-1.531259
30	6	0	-3.914104	1.514956	-0.587148
31	6	0	-4.383546	-0.065879	1.372828
32	6	0	-4.106724	-1.574467	-0.662501
33	8	0	-1.512398	-0.149424	-2.449993
34	8	0	-4.378922	2.500167	-0.963991
35	8	0	-5.067827	-0.051293	2.293051
36	8	0	-4.690527	-2.474089	-1.085087

 Table S43. The theoretical Cartesian coordinates (in Å) for the structure Fe27-3 of C₁₂H₈Fe₂(CO)₇ using M06-L

 method

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	х	У	Z	
1	6	0	2.031831	1.605361	-0.451208	
2	6	0	0.628977	1.480172	-0.788561	
3	6	0	-0.098396	2.579226	-0.321101	
4	6	0	-1.457572	2.605068	-0.597125	
5	1	0	-2.094297	3.422732	-0.283135	
6	6	0	-2.020186	1.522592	-1.307624	
7	6	0	-1.247393	0.406363	-1.724809	
8	6	0	0.131551	0.392634	-1.442424	
9	6	0	1.169823	-0.609033	-1.719609	
10	6	0	2.492695	-0.149866	-2.025249	
11	1	0	3.148655	-0.708275	-2.679855	
12	1	0	0.874179	-1.572587	-2.119170	
13	1	0	-3.030976	1.621433	-1.680090	
14	1	0	-1.667490	-0.311258	-2.416651	
15	6	0	0.867734	3.409306	0.381881	
16	6	0	2.106160	2.844058	0.312388	
17	1	0	0.639079	4.340718	0.880124	
18	1	0	3.012804	3.267798	0.720249	
19	6	0	2.965553	0.994675	-1.346312	
20	1	0	3.972119	1.363165	-1.491135	
21	26	0	-2.710578	-0.339429	0.138552	
22	6	0	-3.766803	-1.042892	-1.159644	
23	6	0	-4.185160	0.165896	1.003577	
24	6	0	-1.754062	0.467001	1.466864	
25	6	0	-1.960129	-1.939192	0.425054	
26	8	0	-4.443778	-1.484943	-1.973902	
27	8	0	-5.139236	0.382714	1.615182	
28	8	0	-1.207661	1.005232	2.317238	
29	8	0	-1.570468	-2.996768	0.668488	
30	26	0	2.540643	-0.518505	-0.007831	
31	6	0	3.917303	-0.059751	1.054670	
32	6	0	3.197233	-2.167986	-0.244455	
33	6	0	1.335768	-0.935519	1.290362	
34	8	0	4.776161	0.283597	1.733457	
35	8	0	3.591609	-3.231541	-0.417002	
36	8	0	0.672708	-1.274057	2.160397	

 Table S44. The theoretical Cartesian coordinates (in Å) for the structure Fe27-4 of C₁₂H₈Fe₂(CO)₇ using M06-L

 method

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Type	х	У	Z
1	6	0	-1.230917	1.139588	-1.064939
2	6	0	-0.397169	0.568255	-0.059324
3	6	0	-0.044940	-0.786797	-0.383254
4	6	0	0.878759	-1.490642	0.415704
5	1	0	0.980981	-2.562027	0.304883
6	6	0	1.450895	-0.831403	1.551660
7	6	0	1.374240	0.603654	1.579083
8	6	0	0.330663	1.327702	0.893987
9	6	0	0.040403	2.679984	0.925864
10	6	0	-0.841187	3.246608	-0.022387
11	1	0	-1.005112	4.316982	0.022432
12	1	0	0.553027	3.331021	1.622758
13	1	0	1.882367	-1.397076	2.364596
14	1	0	1.896887	1.120642	2.374998
15	6	0	-0.951650	-1.140105	-1.438972
16	6	0	-1.643871	0.043880	-1.893724
17	1	0	-1.006028	-2.103319	-1.922720
18	1	0	-2.259608	0.108023	-2.776396
19	6	0	-1.469769	2.534014	-1.017003
20	1	0	-2.103484	3.021061	-1.744803
21	26	0	-2.353314	-0.443341	-0.036889
22	6	0	-3.527968	0.799154	0.552498
23	6	0	-2.065001	-1.263800	1.566702
24	6	0	-3.632812	-1.531451	-0.641942
25	8	0	-4.247532	1.605988	0.928271
26	8	0	-1.897018	-1.786966	2.570472
27	8	0	-4.423406	-2.249423	-1.059291
28	26	0	2.591433	-0.257906	0.018318
29	6	0	4.080163	0.323165	0.794554
30	6	0	2.367280	0.891863	-1.364603
31	6	0	3.464549	-1.620093	-0.737833
32	8	0	5.033704	0.715892	1.310094
33	8	0	2.243825	1.647573	-2.225880
34	8	0	4.012911	-2.503609	-1.236082

 Table S45. The theoretical Cartesian coordinates (in Å) for the structure Fe26-1 of $C_{12}H_8Fe_2(CO)_6$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)			
Number	Number	Туре	х	у	Z	
1	6	0	0.294667	0.048027	-1.600701	
2	6	0	0.719259	1.121917	-0.768395	
3	6	0	2.133143	1.327834	-0.855657	
4	6	0	2.684325	2.452481	-0.195515	
5	1	0	3.746567	2.652091	-0.214037	
6	6	0	1.807070	3.289479	0.454192	
7	6	0	0.402499	3.123042	0.455245	
8	6	0	-0.189334	2.059128	-0.202385	
9	6	0	-1.582461	1.863497	-0.523865	
10	6	0	-1.972132	0.994186	-1.613551	
11	1	0	-2.756556	1.252166	-2.313010	
12	1	0	-2.241492	2.690805	-0.285594	
13	1	0	2.208570	4.160812	0.958242	
14	1	0	-0.213839	3.890761	0.906317	
15	6	0	2.629987	0.248246	-1.658352	
16	6	0	1.512838	-0.568199	-2.063175	
17	1	0	3.652078	0.101578	-1.970737	
18	1	0	1.577642	-1.412830	-2.731214	
19	6	0	-1.091650	-0.141110	-1.838300	
20	1	0	-1.382277	-0.886211	-2.568572	
21	26	0	-2.313759	-0.072749	-0.028141	
22	6	0	-1.458761	-0.353557	1.527934	
23	6	0	-2.993746	-1.685368	-0.370013	
24	6	0	-3.903236	0.541059	0.481522	
25	8	0	-0.951910	-0.486233	2.559304	
26	8	0	-3.400592	-2.739538	-0.604258	
27	8	0	-4.929094	0.950440	0.814902	
28	26	0	1.842381	-0.659838	-0.009634	
29	6	0	0.715024	-2.050969	0.329353	
30	6	0	1.980542	-0.048039	1.685554	
31	6	0	3.344504	-1.624475	0.100042	
32	8	0	0.082665	-2.988749	0.484052	
33	8	0	2.079617	0.391908	2.734254	
34	8	0	4.303051	-2.250951	0.153891	

 Table S46. The theoretical Cartesian coordinates (in Å) for the structure Fe26-2 of C₁₂H₈Fe₂(CO)₆ using M06-L

 method

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	У	Z
1	6	0	-0.630153	1.880676	0.538154
2	6	0	0.052359	0.835023	0.023344
3	6	0	1.189015	1.268864	-0.741248
4	6	0	1.687518	0.391942	-1.749988
5	1	0	2.273410	0.742881	-2.588409
6	6	0	1.370627	-0.979540	-1.596943
7	6	0	0.627908	-1.410646	-0.458167
8	6	0	-0.331012	-0.527830	0.192405
9	6	0	-1.123119	-0.830719	1.339213
10	6	0	-1.894391	0.224046	1.877518
11	1	0	-2.536907	0.045812	2.728804
12	1	0	-1.142946	-1.821294	1.774421
13	1	0	1.770946	-1.703564	-2.294106
14	1	0	0.560740	-2.479661	-0.288275
15	6	0	1.192927	2.717271	-0.600749
16	6	0	0.094260	3.069093	0.144120
17	1	0	1.900594	3.392629	-1.055662
18	1	0	-0.182874	4.084835	0.390506
19	6	0	-1.868398	1.489807	1.208112
20	1	0	-2.573884	2.241239	1.541827
21	26	0	-2.625624	-0.235438	0.009425
22	6	0	-2.521365	0.692485	-1.547544
23	6	0	-4.341122	-0.026916	0.460441
24	6	0	-2.932314	-1.910076	-0.555644
25	8	0	-2.437482	1.285200	-2.527701
26	8	0	-5.441638	0.148689	0.748075
27	8	0	-3.067199	-2.987321	-0.939718
28	26	0	2.541780	-0.329603	-0.017780
29	6	0	2.189206	-0.159811	1.757025
30	6	0	3.985240	0.733173	-0.171185
31	6	0	3.534722	-1.816098	0.005033
32	8	0	1.950204	-0.050813	2.871453
33	8	0	4.892116	1.428231	-0.266869
34	8	0	4.156426	-2.781022	0.022850

 Table S47. The theoretical Cartesian coordinates (in Å) for the structure Fe26-3 of $C_{12}H_8Fe_2(CO)_6$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	х	у	Z
1	6	0	1.405325	1.195447	-0.999896
2	6	0	-0.000428	1.297869	-0.713731
3	6	0	-0.199698	2.517149	0.081617
4	6	0	-1.461427	2.759014	0.486071
5	1	0	-1.756507	3.610745	1.085555
6	6	0	-2.461825	1.791888	0.045726
7	6	0	-2.323666	1.136970	-1.230818
8	6	0	-1.002239	0.817522	-1.620124
9	6	0	-0.565369	0.034779	-2.748753
10	6	0	0.742299	-0.304250	-2.842594
11	1	0	1.059891	-0.956362	-3.648164
12	1	0	-1.299011	-0.343351	-3.448895
13	1	0	-3.474945	1.935730	0.402152
14	1	0	-3.174068	0.868215	-1.843606
15	6	0	1.086795	3.157085	0.181349
16	6	0	2.019034	2.405063	-0.457635
17	1	0	1.279969	4.065665	0.731713
18	1	0	3.075632	2.623852	-0.526013
19	6	0	1.759657	0.159570	-1.926756
20	1	0	2.783919	0.081479	-2.271639
21	26	0	-1.676161	-0.223050	0.159351
22	6	0	-3.318439	-0.849706	0.369617
23	6	0	-1.277352	-0.246165	1.927540
24	6	0	-1.281725	-1.867508	-0.553680
25	8	0	-4.398292	-1.213528	0.513497
26	8	0	-1.179832	-0.303219	3.068760
27	8	0	-1.184351	-2.895574	-1.052289
28	26	0	1.580355	-0.467094	0.141668
29	6	0	3.333251	-0.525946	0.176669
30	6	0	1.408165	-2.278732	0.264292
31	6	0	1.616995	0.173313	1.828628
32	8	0	4.483969	-0.571971	0.176822
33	8	0	1.442584	-3.416384	0.425686
34	8	0	1.725918	0.627875	2.878436

 Table S48. The theoretical Cartesian coordinates (in Å) for the structure Fe26-4 of C₁₂H₈Fe₂(CO)₆ using M06-L

 method.

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	у	Z
1	6	0	-1.722144	1.011594	-1.173901
2	6	0	-1.731124	0.203208	0.000000
3	6	0	-1.722144	1.011594	1.173901
4	6	0	-1.655857	0.351426	2.443696
5	1	0	-1.737569	0.915131	3.363630
6	6	0	-1.452756	-0.991448	2.460707
7	6	0	-1.275427	-1.783915	1.266994
8	6	0	-1.559141	-1.197746	0.000000
9	6	0	-1.275427	-1.783915	-1.266994
10	6	0	-1.452756	-0.991448	-2.460707
11	1	0	-1.377327	-1.501788	-3.412792
12	1	0	-1.297000	-2.860902	-1.367812
13	1	0	-1.377327	-1.501788	3.412792
14	1	0	-1.297000	-2.860902	1.367812
15	6	0	-1.695390	2.370239	0.711758
16	6	0	-1.695390	2.370239	-0.711758
17	1	0	-1.679292	3.250654	1.334693
18	1	0	-1.679292	3.250654	-1.334693
19	6	0	-1.655857	0.351426	-2.443696
20	1	0	-1.737569	0.915131	-3.363630
21	26	0	0.507443	-1.318172	0.000000
22	6	0	1.554065	-0.800988	1.361189
23	6	0	1.554065	-0.800988	-1.361189
24	6	0	1.005675	-3.026680	0.000000
25	8	0	2.251515	-0.606232	2.254823
26	8	0	2.251515	-0.606232	-2.254823
27	8	0	1.368491	-4.118806	0.000000
28	26	0	0.000000	1.403399	0.000000
29	6	0	1.080818	1.986099	-1.274324
30	6	0	1.080818	1.986099	1.274324
31	8	0	1.732744	2.452492	-2.101508
32	8	0	1.732744	2.452492	2.101508

Table S49. The theoretical Cartesian coordinates (in Å) for the structure Fe25-1 of $C_{12}H_8Fe_2(CO)_5$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	у	Z
1	6	0	-0.351875	-0.085591	-1.790961
2	6	0	-1.185244	-0.932182	-0.979512
3	6	0	-2.479058	-0.375026	-0.836084
4	6	0	-3.418407	-1.107800	-0.058000
5	1	0	-4.431158	-0.752348	0.074847
6	6	0	-2.990780	-2.265645	0.540245
7	6	0	-1.655220	-2.741072	0.471205
8	6	0	-0.718138	-2.060642	-0.273121
9	6	0	0.718234	-2.265000	-0.383189
10	6	0	1.437760	-1.707296	-1.487248
11	1	0	2.362479	-2.156117	-1.822826
12	1	0	1.145500	-3.133123	0.103705
13	1	0	-3.697883	-2.831707	1.134478
14	1	0	-1.375415	-3.619501	1.039017
15	6	0	-2.424201	0.916048	-1.468789
16	6	0	-1.144243	1.053057	-2.100001
17	1	0	-3.238109	1.617349	-1.556984
18	1	0	-0.826162	1.905765	-2.679168
19	6	0	1.000358	-0.494362	-2.054797
20	1	0	1.581298	-0.011378	-2.828621
21	26	0	1.614071	-0.316191	0.007562
22	6	0	0.970785	-0.154701	1.687907
23	6	0	2.266969	1.333570	-0.270338
24	6	0	3.215100	-0.948583	0.434870
25	8	0	0.791356	-0.182100	2.827616
26	8	0	2.697796	2.378738	-0.477679
27	8	0	4.246474	-1.350797	0.749036
28	26	0	-0.923329	0.920333	-0.031239
29	6	0	-0.433409	2.601728	0.169089
30	6	0	-1.618560	0.880314	1.601650
31	8	0	-0.164515	3.717569	0.270134
32	8	0	-2.148645	0.860647	2.622592

 Table S50. The theoretical Cartesian coordinates (in Å) for the structure Fe25-2 of C₁₂H₈Fe₂(CO)₅ using M06-L

 method.

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	х	У	Z
1	6	0	0.878808	-1.599971	-0.918456
2	6	0	-0.515306	-1.460520	-0.701562
3	6	0	-1.117302	-0.866996	-1.864869
4	6	0	-2.423393	-0.369384	-1.667063
5	1	0	-2.897177	0.261956	-2.408016
6	6	0	-3.145532	-0.698151	-0.489200
7	6	0	-2.562146	-1.436822	0.561670
8	6	0	-1.203188	-1.853299	0.470625
9	6	0	-0.405283	-2.443523	1.504576
10	6	0	0.948305	-2.469522	1.367508
11	1	0	1.545387	-2.868778	2.179022
12	1	0	-0.879501	-2.794719	2.411511
13	1	0	-4.154046	-0.326287	-0.372298
14	1	0	-3.129607	-1.634483	1.461454
15	6	0	-0.097215	-0.701453	-2.823223
16	6	0	1.110835	-1.091894	-2.244563
17	1	0	-0.202848	-0.211019	-3.777493
18	1	0	2.075296	-1.069983	-2.730910
19	6	0	1.658562	-1.957051	0.222781
20	1	0	2.703992	-2.217889	0.123741
21	26	0	-1.417766	0.308930	0.168664
22	6	0	-1.128643	0.675899	1.873487
23	6	0	-1.838179	1.996748	-0.140365
24	8	0	-1.076534	0.908528	3.000608
25	8	0	-2.175539	3.082861	-0.319010
26	26	0	1.412115	0.197433	0.021525
27	6	0	3.094178	0.357251	-0.490466
28	6	0	1.739225	0.774940	1.688701
29	6	0	0.890435	1.692311	-0.848646
30	8	0	4.189609	0.494451	-0.819392
31	8	0	2.022223	1.150482	2.737668
32	8	0	0.762798	2.664226	-1.454569

 Table S51. The theoretical Cartesian coordinates (in Å) for the structure Fe25-3 of C₁₂H₈Fe₂(CO)₅ using M06-L

 method

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	у	Z
1	6	0	-1.252258	0.186945	1.667807
2	6	0	-0.439836	0.046393	0.523432
3	6	0	0.528276	1.123155	0.454823
4	6	0	1.063610	1.479156	-0.816017
5	1	0	1.450424	2.465267	-1.033792
6	6	0	1.077985	0.450821	-1.782604
7	6	0	0.627069	-0.850983	-1.393940
8	6	0	-0.464375	-0.982742	-0.419737
9	6	0	-1.441380	-1.969213	-0.222249
10	6	0	-2.301547	-1.857782	0.911247
11	1	0	-3.107421	-2.572928	1.004000
12	1	0	-1.562247	-2.795384	-0.909324
13	1	0	1.499352	0.626907	-2.762915
14	1	0	0.777075	-1.655372	-2.104216
15	6	0	0.273758	1.915263	1.647605
16	6	0	-0.774802	1.388813	2.336645
17	1	0	0.802008	2.820919	1.909127
18	1	0	-1.197030	1.796700	3.243148
19	6	0	-2.242704	-0.793693	1.854343
20	1	0	-2.946331	-0.759195	2.674114
21	26	0	-2.437751	-0.071730	-0.146999
22	6	0	-2.403538	1.442161	-1.048387
23	6	0	-4.115830	-0.246363	-0.643954
24	8	0	-2.368408	2.438235	-1.637242
25	8	0	-5.218531	-0.341933	-0.981181
26	26	0	2.296585	-0.082038	-0.217247
27	6	0	2.146081	-1.348264	1.074204
28	6	0	3.494732	1.026270	0.540579
29	6	0	3.547042	-0.822513	-1.266685
30	8	0	2.027496	-2.151063	1.882860
31	8	0	4.232788	1.744792	1.046607
32	8	0	4.329251	-1.321722	-1.942597

 Table S52. The theoretical Cartesian coordinates (in Å) for the structure Fe25-4 of $C_{12}H_8Fe_2(CO)_5$ using M06-L method.

Contor	Atomio	Atomia	(Coordinatos (A m	astroma)
Newley	Atomic	Atomic	(Loorumates (All	igstroms)
Number	Number	Туре	Х	У	Z
1	6	0	-1.441216	1.309140	-1.020909
2	6	0	-0.579006	0.732138	-0.055841
3	6	0	-0.317514	-0.654743	-0.349544
4	6	0	0.473421	-1.425802	0.544138
5	1	0	0.465613	-2.506119	0.497591
6	6	0	1.116519	-0.753198	1.609903
7	6	0	1.194540	0.683683	1.552126
8	6	0	0.141382	1.456053	0.913765
9	6	0	-0.160156	2.799273	1.014024
10	6	0	-1.104553	3.377606	0.136443
11	1	0	-1.313718	4.435205	0.244013
12	1	0	0.352775	3.427690	1.731128
13	1	0	1.558318	-1.311055	2.423217
14	1	0	1.782050	1.178645	2.316349
15	6	0	-1.208151	-0.970748	-1.427429
16	6	0	-1.866713	0.229700	-1.874528
17	1	0	-1.305880	-1.938593	-1.894986
18	1	0	-2.508423	0.305201	-2.737422
19	6	0	-1.745597	2.682916	-0.868746
20	1	0	-2.421828	3.186244	-1.546294
21	26	0	-2.507552	-0.239303	-0.009692
22	6	0	-2.477224	-0.648919	1.738513
23	6	0	-3.816749	-1.342407	-0.405704
24	8	0	-2.382961	-0.974467	2.838596
25	8	0	-4.654702	-2.078419	-0.697529
26	26	0	2.262643	-0.349648	-0.010807
27	6	0	2.278084	1.009894	-1.215051
28	6	0	2.851489	-1.717482	-1.006439
29	6	0	3.837825	-0.214896	0.803912
30	8	0	2.320745	1.897944	-1.944738
31	8	0	3.202761	-2.595914	-1.662810
32	8	0	4.851711	-0.096364	1.337425

Table S53. The theoretical Cartesian coordinates (in Å) for the structure **Fe25-5** of $C_{12}H_8Fe_2(CO)_5$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	у	Z
1	6	0	-2.612556	-0.041003	0.353132
2	6	0	-1.433776	-0.697328	0.795666
3	6	0	-0.631083	0.183739	1.600835
4	6	0	0.676238	-0.251554	2.015848
5	1	0	1.229274	0.306784	2.759345
6	6	0	1.090308	-1.547746	1.646825
7	6	0	0.411931	-2.219846	0.582347
8	6	0	-0.975457	-1.933849	0.282178
9	6	0	-1.839671	-2.605322	-0.553558
10	6	0	-3.075247	-2.015144	-0.918081
11	1	0	-3.723253	-2.571464	-1.584916
12	1	0	-1.555128	-3.554403	-0.990155
13	1	0	1.957605	-1.992616	2.114146
14	1	0	0.819181	-3.165631	0.246296
15	6	0	-1.336339	1.430416	1.622080
16	6	0	-2.531887	1.305174	0.830344
17	1	0	-1.019387	2.324917	2.135380
18	1	0	-3.273588	2.076317	0.697713
19	6	0	-3.464962	-0.757913	-0.525157
20	1	0	-4.385494	-0.321704	-0.888268
21	26	0	1.488599	-0.393047	-0.009940
22	6	0	2.935919	-1.310094	-0.472518
23	6	0	2.417349	1.138038	0.121086
24	8	0	3.859313	-1.906876	-0.815099
25	8	0	2.993822	2.127866	0.214224
26	26	0	-0.777947	0.975737	-0.256632
27	6	0	-0.247180	2.621329	-0.621268
28	6	0	0.455543	-0.064696	-1.444864
29	8	0	0.049437	3.725441	-0.776345
30	8	0	-0.347689	0.096401	-2.303783

 Table S54. The theoretical Cartesian coordinates (in Å) for the structure Fe24-1 of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(Ar	igstroms)
Number	Number	Type	х	у	Z
1	6	0	1.378114	1.895419	0.163303
2	6	0	0.755260	1.014081	1.093569
3	6	0	1.630610	-0.059117	1.438309
4	6	0	1.127860	-1.084920	2.309560
5	1	0	1.787299	-1.847775	2.701622
6	6	0	-0.198806	-1.090790	2.597293
7	6	0	-1.141947	-0.147374	2.034565
8	6	0	-0.635760	1.009660	1.371874
9	6	0	-1.412360	1.930618	0.612279
10	6	0	-0.749262	2.946304	-0.162900
11	1	0	-1.365893	3.719170	-0.604194
12	1	0	-2.447922	2.091493	0.879740
13	1	0	-0.595378	-1.868887	3.237765
14	1	0	-2.148368	-0.132409	2.431876
15	6	0	2.840078	0.175048	0.693389
16	6	0	2.682741	1.348624	-0.093364
17	1	0	3.717511	-0.453016	0.707659
18	1	0	3.428723	1.762972	-0.753172
19	6	0	0.589447	2.944750	-0.403894
20	1	0	1.042250	3.693120	-1.040419
21	26	0	-1.329196	-0.188062	-0.178586
22	6	0	-1.176566	-1.968800	-0.233217
23	6	0	-0.453780	0.188891	-1.692617
24	6	0	-3.095666	-0.100281	-0.398311
25	8	0	-1.118036	-3.116031	-0.241431
26	8	0	0.290938	0.485940	-2.567648
27	8	0	-4.228814	-0.059452	-0.601228
28	26	0	1.248432	-0.065419	-0.598874
29	6	0	1.672817	-1.733005	-1.025969
30	8	0	2.031530	-2.809057	-1.235960

 Table S55. The theoretical Cartesian coordinates (in Å) for the structure Fe24-2 of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Type	х	У	Z
1	6	0	1.293317	1.869148	0.363661
2	6	0	0.478623	1.035258	1.187776
3	6	0	1.253021	-0.022752	1.752040
4	6	0	0.564230	-1.020135	2.527872
5	1	0	1.118285	-1.777260	3.067091
6	6	0	-0.791511	-1.004719	2.538237
7	6	0	-1.582888	-0.061303	1.771965
8	6	0	-0.934313	1.095985	1.222864
9	6	0	-1.537864	2.013616	0.332058
10	6	0	-0.717268	2.951066	-0.380794
11	1	0	-1.217521	3.710495	-0.968646
12	1	0	-2.601637	2.199173	0.394803
13	1	0	-1.324985	-1.762544	3.097957
14	1	0	-2.640949	-0.008776	1.995408
15	6	0	2.585589	0.170823	1.264236
16	6	0	2.611683	1.305863	0.403382
17	1	0	3.432052	-0.461910	1.481659
18	1	0	3.483260	1.684944	-0.104994
19	6	0	0.645665	2.905352	-0.381158
20	1	0	1.224848	3.609669	-0.963766
21	26	0	-1.326373	-0.147290	-0.354177
22	6	0	-0.911786	-1.879111	-0.465781
23	6	0	-3.079034	-0.296864	-0.592279
24	8	0	-0.827159	-3.029984	-0.459549
25	8	0	-4.214729	-0.441073	-0.731525
26	26	0	1.282239	-0.126993	-0.347567
27	6	0	0.936715	0.269550	-2.031325
28	6	0	1.867184	-1.745441	-0.740021
29	8	0	0.675646	0.553371	-3.122601
30	8	0	2.314485	-2.779868	-0.985144

 Table S56. The theoretical Cartesian coordinates (in Å) for the structure Fe24-3 of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	gstroms)
Number	Number	Туре	Х	у	Z
1	6	0	0.715752	-1.442622	0.702253
2	6	0	0.038676	-0.211237	0.432117
3	6	0	0.134488	0.120832	-0.989915
4	6	0	-0.632482	1.228706	-1.467370
5	1	0	-0.646775	1.500985	-2.512242
6	6	0	-1.224909	2.061879	-0.488794
7	6	0	-1.305116	1.715697	0.881773
8	6	0	-0.674411	0.544521	1.405920
9	6	0	-0.630544	0.046099	2.728329
10	6	0	0.120130	-1.077535	3.013137
11	1	0	0.172614	-1.413648	4.041046
12	1	0	-1.152019	0.571572	3.517566
13	1	0	-1.790290	2.922181	-0.821877
14	1	0	-1.921488	2.323359	1.531103
15	6	0	0.969740	-0.891190	-1.564416
16	6	0	1.315025	-1.837788	-0.543411
17	1	0	1.220074	-0.974880	-2.609490
18	1	0	1.924485	-2.713443	-0.698040
19	6	0	0.823246	-1.815249	2.042208
20	1	0	1.392388	-2.688409	2.332794
21	26	0	2.084990	0.013957	-0.109101
22	6	0	2.403972	1.755034	0.062215
23	6	0	3.732467	-0.303727	-0.615976
24	8	0	2.586057	2.894055	0.107495
25	8	0	4.802659	-0.525305	-0.989756
26	26	0	-1.968550	0.109273	-0.306457
27	6	0	-2.362361	-1.460662	-1.033053
28	6	0	-3.691411	0.419589	-0.189861
29	8	0	-2.639587	-2.472641	-1.510745
30	8	0	-4.826631	0.623166	-0.135408

Table S57. The theoretical Cartesian coordinates (in Å) for the structure **Fe24-4** of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	gstroms)
Number	Number	Туре	Х	У	Z
1	6	0	0.702301	1.538130	-0.424048
2	6	0	0.035578	0.419543	0.174496
3	6	0	-0.719641	0.863122	1.305634
4	6	0	-1.511380	-0.070261	2.013597
5	1	0	-2.118700	0.223621	2.857898
6	6	0	-1.458090	-1.422066	1.605158
7	6	0	-0.750337	-1.832093	0.450083
8	6	0	0.056052	-0.922497	-0.308443
9	6	0	0.886857	-1.166325	-1.445364
10	6	0	1.433978	-0.042061	-2.133293
11	1	0	2.041158	-0.229830	-3.008370
12	1	0	0.970761	-2.158867	-1.863998
13	1	0	-2.063069	-2.153158	2.123597
14	1	0	-0.862620	-2.849836	0.102269
15	6	0	-0.505261	2.289027	1.378625
16	6	0	0.343925	2.679267	0.382683
17	1	0	-0.920690	2.932096	2.139705
18	1	0	0.694286	3.686032	0.212611
19	6	0	1.377703	1.282397	-1.634133
20	1	0	1.915039	2.063793	-2.155084
21	26	0	2.133299	-0.084907	-0.180661
22	6	0	2.509590	-0.656064	1.454793
23	6	0	3.838674	-0.176183	-0.550200
24	8	0	2.764788	-1.052108	2.508178
25	8	0	4.968896	-0.235105	-0.783429
26	26	0	-2.063299	-0.252952	-0.017741
27	6	0	-3.063600	1.161887	-0.397657
28	6	0	-3.280440	-1.248699	-0.804885
29	8	0	-3.738641	2.066599	-0.631743
30	8	0	-4.101494	-1.893420	-1.299566

 Table S58. The theoretical Cartesian coordinates (in Å) for the structure Fe24-5 of C₁₂H₈Fe₂(CO)₄ using M06-L

 method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	х	у	Z
1	6	0	0.885563	0.762248	-1.316616
2	6	0	0.000000	0.000000	-0.481613
3	6	0	-0.885563	-0.762248	-1.316616
4	6	0	-1.892433	-1.486518	-0.652567
5	1	0	-2.589021	-2.109979	-1.197457
6	6	0	-1.924846	-1.504682	0.765134
7	6	0	-0.949954	-0.873858	1.585548
8	6	0	0.000000	0.000000	0.967425
9	6	0	0.949954	0.873858	1.585548
10	6	0	1.924846	1.504682	0.765134
11	1	0	2.638601	2.161956	1.243338
12	1	0	1.006152	0.947802	2.661867
13	1	0	-2.638601	-2.161956	1.243338
14	1	0	-1.006152	-0.947802	2.661867
15	6	0	-0.514698	-0.448230	-2.675485
16	6	0	0.514698	0.448230	-2.675485
17	1	0	-1.001355	-0.848690	-3.551734
18	1	0	1.001355	0.848690	-3.551734
19	6	0	1.892433	1.486518	-0.652567
20	1	0	2.589021	2.109979	-1.197457
21	26	0	0.000000	2.058295	0.174387
22	6	0	-1.751124	2.321725	0.168861
23	6	0	0.194861	3.788523	0.366502
24	8	0	-2.889008	2.513210	0.183391
25	8	0	0.303554	4.931349	0.492138
26	26	0	0.000000	-2.058295	0.174387
27	6	0	1.751124	-2.321725	0.168861
28	6	0	-0.194861	-3.788523	0.366502
29	8	0	2.889008	-2.513210	0.183391
30	8	0	-0.303554	-4.931349	0.492138

Table S59. The theoretical Cartesian coordinates (in Å) for the structure **Fe24-6** of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Type	х	У	Z
1	6	0	0.096036	-0.079624	-1.680669
2	6	0	0.208641	1.026581	-0.781658
3	6	0	1.560402	1.470706	-0.688575
4	6	0	1.817320	2.641424	0.069982
5	1	0	2.822213	3.025692	0.182001
6	6	0	0.746246	3.276585	0.651066
7	6	0	-0.594352	2.848018	0.510227
8	6	0	-0.898686	1.727984	-0.239301
9	6	0	-2.205214	1.245830	-0.643278
10	6	0	-2.313483	0.361873	-1.756772
11	1	0	-3.233417	0.279006	-2.326666
12	1	0	-3.059403	1.864412	-0.393120
13	1	0	0.931446	4.174519	1.228658
14	1	0	-1.387020	3.441955	0.947981
15	6	0	2.341703	0.503495	-1.402411
16	6	0	1.428468	-0.451745	-2.000103
17	1	0	3.404187	0.543095	-1.582435
18	1	0	1.721636	-1.253750	-2.659519
19	6	0	-1.213462	-0.522371	-2.045234
20	1	0	-1.321865	-1.263652	-2.826887
21	26	0	-2.346599	-0.809017	-0.201339
22	6	0	-3.328964	-0.649414	1.257759
23	6	0	-1.067528	-1.664151	0.528156
24	8	0	-3.947817	-0.502802	2.223051
25	8	0	0.053236	-1.978601	0.779382
26	26	0	1.496372	-0.543439	0.105925
27	6	0	2.796767	-1.742367	0.168663
28	6	0	1.832540	0.042598	1.761043
29	8	0	3.685828	-2.470652	0.157722
30	8	0	2.082442	0.469561	2.797016

 Table S60. The theoretical Cartesian coordinates (in Å) for the structure Fe24-7 of $C_{12}H_8Fe_2(CO)_4$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	У	Z
1	6	0	0.633213	0.423365	-1.434157
2	6	0	-0.268024	0.346461	-0.355930
3	6	0	-1.150250	1.457934	-0.320323
4	6	0	-2.260720	1.378313	0.590454
5	1	0	-2.902405	2.240694	0.715736
6	6	0	-2.205615	0.404426	1.654370
7	6	0	-1.452196	-0.781451	1.438274
8	6	0	-0.567713	-0.885818	0.331430
9	6	0	0.059256	-2.058802	-0.187975
10	6	0	0.818639	-2.025187	-1.412439
11	1	0	0.838540	-2.865483	-2.092928
12	1	0	-0.331987	-3.012838	0.146813
13	1	0	-2.743555	0.557292	2.578650
14	1	0	-1.525372	-1.597409	2.145968
15	6	0	-0.700541	2.340093	-1.341524
16	6	0	0.428886	1.728026	-2.006452
17	1	0	-1.152300	3.280279	-1.617961
18	1	0	0.928012	2.125224	-2.875819
19	6	0	1.422243	-0.741890	-1.738201
20	1	0	2.065035	-0.692574	-2.608586
21	26	0	0.917673	2.200192	-0.064538
22	6	0	0.677159	2.187520	1.734846
23	6	0	1.139910	3.976236	-0.190580
24	6	0	2.706839	1.870947	-0.104074
25	8	0	0.494471	2.192571	2.863134
26	8	0	1.257630	5.112125	-0.281320
27	8	0	3.833355	1.703531	-0.182641
28	26	0	-3.099264	-0.499608	0.088412
29	6	0	-3.597638	-2.206151	0.326214
30	6	0	-2.866122	-0.501204	-1.708821
31	6	0	-4.773492	0.086758	0.292820
32	8	0	-3.888345	-3.307567	0.479205
33	8	0	-2.723696	-0.468513	-2.849443
34	8	0	-5.845247	0.487051	0.409646
35	26	0	2.171738	-1.773364	-0.025124
36	6	0	2.440645	-0.727877	1.415180
37	6	0	3.803759	-1.775222	-0.733157
38	6	0	2.388120	-3.400404	0.686515
39	8	0	2.624439	-0.115915	2.378911
40	8	0	4.853720	-1.743309	-1.207848
41	8	0	2.521432	-4.449894	1.143083

 Table S61. The theoretical Cartesian coordinates (in Å) for the structure Fe39-1 of C₁₂H₈Fe₃(CO)₉ using M06-L

 method

Center	Atomic	Atomic	(Coordinates(An	gstroms)
Number	Number	Туре	х	У	Z
1	6	0	1.073138	0.849209	-1.617683
2	6	0	-0.128434	0.188826	-1.224535
3	6	0	-1.253121	0.983629	-1.413755
4	6	0	-2.513500	0.227964	-1.300244
5	1	0	-3.451024	0.765436	-1.220815
6	6	0	-2.525222	-1.046569	-1.962551
7	6	0	-1.342766	-1.805282	-1.872489
8	6	0	-0.239801	-1.242583	-1.131035
9	6	0	1.086760	-1.914105	-1.095690
10	6	0	2.143458	-1.328855	-1.893779
11	1	0	2.842502	-1.928011	-2.460183
12	1	0	1.071335	-2.998178	-1.043801
13	1	0	-3.410302	-1.450384	-2.436787
14	1	0	-1.270098	-2.796258	-2.301944
15	6	0	-0.798837	2.259052	-1.911909
16	6	0	0.657520	2.227149	-1.805553
17	1	0	-1.386278	3.007460	-2.418698
18	1	0	1.299009	3.004670	-2.193591
19	6	0	2.201471	0.097952	-1.968134
20	1	0	3.043886	0.574189	-2.452022
21	26	0	-0.368305	2.392259	0.011780
22	6	0	0.760480	2.003476	1.389479
23	6	0	-1.926315	2.513186	0.903397
24	6	0	-0.125117	4.149737	0.049795
25	8	0	1.454925	1.840800	2.287177
26	8	0	-2.943691	2.599185	1.429909
27	8	0	0.053476	5.284472	0.034006
28	26	0	-2.125585	-1.475545	-0.006387
29	6	0	-3.860296	-1.791381	0.343247
30	6	0	-1.624189	-3.102019	0.581611
31	6	0	-1.741846	-0.557218	1.509546
32	8	0	-4.970916	-1.971142	0.566179
33	8	0	-1.247177	-4.122282	0.942782
34	8	0	-1.571976	-0.014910	2.502942
35	26	0	2.542238	-0.892558	-0.010200
36	6	0	1.614880	-1.122055	1.509832
37	6	0	3.737354	-2.190852	0.136837
38	6	0	3.727174	0.359825	0.492490
39	8	0	1.074972	-1.433947	2.478514
40	8	0	4.499788	-3.046712	0.255172
41	8	0	4.458998	1.194349	0.795763

 Table S62. The theoretical Cartesian coordinates (in Å) for the structure Fe39-2 of C₁₂H₈Fe₃(CO)₉ using M06-L

 method

Center	Atomic	Atomic	(Coordinates(An	igstroms)
Number	Number	Туре	Х	у	Z
1	6	0	1.297645	1.398964	0.578191
2	6	0	0.751158	0.062837	0.535825
3	6	0	0.835935	-0.428031	-0.811123
4	6	0	0.444403	-1.772609	-0.986496
5	1	0	0.539404	-2.242953	-1.958025
6	6	0	-0.573692	-2.299205	-0.071727
7	6	0	-0.860836	-1.634906	1.174754
8	6	0	-0.187600	-0.406004	1.491251
9	6	0	-0.391151	0.412958	2.609987
10	6	0	0.216484	1.659808	2.704683
11	1	0	0.021865	2.255639	3.589085
12	1	0	-1.067095	0.090322	3.392551
13	1	0	-0.716305	-3.372938	-0.106125
14	1	0	-1.254042	-2.210386	2.004606
15	6	0	1.770736	0.415725	-1.454608
16	6	0	1.871841	1.672698	-0.695600
17	1	0	2.084572	0.306337	-2.482976
18	1	0	2.683495	2.366102	-0.858804
19	6	0	1.042911	2.211459	1.704028
20	1	0	1.580198	3.132507	1.886051
21	26	0	0.005197	2.800489	-0.276589
22	6	0	-1.346751	3.677385	0.492087
23	6	0	-1.053875	1.556590	-0.871977
24	6	0	0.680614	4.185650	-1.223195
25	8	0	-2.217785	4.213390	1.020374
26	8	0	-1.674358	0.623912	-1.250944
27	8	0	1.036661	5.004731	-1.953734
28	26	0	2.417515	-1.342311	-0.093332
29	6	0	3.795676	-0.367287	0.580992
30	6	0	3.350421	-2.294396	-1.294349
31	6	0	2.304422	-2.665178	1.121980
32	8	0	4.672538	0.244937	0.991307
33	8	0	3.943548	-2.886768	-2.077862
34	8	0	2.185887	-3.495488	1.903623
35	26	0	-2.416703	-1.288343	-0.209937
36	6	0	-3.229585	-2.686999	0.461172
37	6	0	-3.611001	-0.128268	0.556645
38	6	0	-3.017077	-1.671948	-1.890229
39	8	0	-3.753128	-3.610124	0.902573
40	8	0	-4.348300	0.590533	1.058584
41	8	0	-3.416611	-1.952097	-2.926896

 Table S63. The theoretical Cartesian coordinates (in Å) for the structure Fe39-3 of C₁₂H₈Fe₃(CO)₉ using M06-L

 method

Center	Atomic	Atomic	(Coordinates(Ar	gstroms)
Number	Number	Туре	х	у	Z
1	6	0	0.622509	0.186015	-1.648594
2	6	0	-0.275746	0.203800	-0.544257
3	6	0	-0.814910	1.489829	-0.340616
4	6	0	-1.930027	1.561617	0.589028
5	1	0	-2.391178	2.522861	0.775767
6	6	0	-2.013744	0.567374	1.627216
7	6	0	-1.486327	-0.722332	1.354233
8	6	0	-0.722557	-0.947427	0.186839
9	6	0	-0.052976	-2.154874	-0.194467
10	6	0	0.734565	-2.230911	-1.362627
11	1	0	1.045498	-3.201380	-1.724237
12	1	0	-0.282199	-3.073322	0.331316
13	1	0	-2.462040	0.782413	2.586293
14	1	0	-1.615914	-1.522219	2.072238
15	6	0	-0.109983	2.346431	-1.219006
16	6	0	0.792060	1.548131	-2.025583
17	1	0	-0.255832	3.409550	-1.329876
18	1	0	1.411854	1.919339	-2.824958
19	6	0	1.225042	-1.065201	-2.015729
20	1	0	1.834190	-1.150407	-2.903660
21	26	0	1.364449	1.429678	-0.039329
22	6	0	1.218341	1.398460	1.740144
23	6	0	2.460083	2.830019	-0.057655
24	8	0	1.076814	1.407396	2.881555
25	8	0	3.138342	3.755500	-0.085214
26	26	0	-3.131664	-0.140147	0.111825
27	6	0	-3.879527	-1.766074	0.281080
28	6	0	-3.071458	0.016903	-1.688649
29	6	0	-4.652213	0.691422	0.525615
30	8	0	-4.332934	-2.817960	0.382897
31	8	0	-3.025308	0.160294	-2.828668
32	8	0	-5.628205	1.244154	0.779809
33	26	0	2.037104	-1.233637	-0.072258
34	6	0	2.136423	-1.530978	1.693312
35	6	0	3.366331	-2.328337	-0.450352
36	6	0	3.160925	0.269112	-0.104162
37	8	0	2.175884	-1.768506	2.816844
38	8	0	4.253491	-3.023856	-0.680623
39	8	0	4.274120	0.628234	-0.149564

 Table S64. The theoretical Cartesian coordinates (in Å) for the structure Fe38-1 of $C_{12}H_8Fe_3(CO)_8$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(Ar	ngstroms)
Number	Number	Туре	Х	у	Z
1	6	0	-0.646965	-0.267033	-1.648614
2	6	0	0.319241	-0.298985	-0.603795
3	6	0	0.856673	-1.581357	-0.442021
4	6	0	2.009470	-1.640816	0.453717
5	1	0	2.533074	-2.580676	0.573119
6	6	0	2.057995	-0.711475	1.549330
7	6	0	1.465210	0.561372	1.367225
8	6	0	0.741792	0.825889	0.181296
9	6	0	-0.017171	2.020620	-0.110689
10	6	0	-0.772313	2.139817	-1.312192
11	1	0	-1.056703	3.119751	-1.669742
12	1	0	0.212597	2.929248	0.432859
13	1	0	2.546274	-0.957185	2.481461
14	1	0	1.544251	1.317765	2.137593
15	6	0	0.097759	-2.439183	-1.284190
16	6	0	-0.822515	-1.622012	-2.042452
17	1	0	0.230629	-3.501670	-1.409748
18	1	0	-1.506685	-1.985961	-2.791831
19	6	0	-1.267689	0.991674	-1.968966
20	1	0	-1.893678	1.093219	-2.844526
21	26	0	-1.273136	-1.477173	-0.032901
22	6	0	-2.023912	0.885669	1.754900
23	6	0	-1.033096	-1.788522	1.696237
24	6	0	-2.726035	-2.492547	-0.105796
25	8	0	-1.981469	0.796839	2.900406
26	8	0	-0.814232	-2.070629	2.792843
27	8	0	-3.633185	-3.198919	-0.182180
28	26	0	3.097014	0.181746	0.059105
29	6	0	3.723501	1.854026	0.267333
30	6	0	3.067501	0.050950	-1.746815
31	6	0	4.679155	-0.535638	0.466835
32	8	0	4.085763	2.937925	0.390610
33	8	0	3.046688	-0.065070	-2.889333
34	8	0	5.693151	-1.017671	0.712859
35	26	0	-2.107521	1.236173	-0.011420
36	6	0	-2.978939	2.783354	0.126226
37	6	0	-3.587074	0.315604	-0.443078
38	8	0	-3.574673	3.758291	0.253944
39	8	0	-4.583367	-0.166056	-0.756714

 Table S65. The theoretical Cartesian coordinates (in Å) for the structure Fe38-2 of $C_{12}H_8Fe_3(CO)_8$ using M06-L method.

Center	Atomic	Atomic	(Coordinates(Ar	igstroms)
Number	Number	Туре	х	у	Z
1	6	0	1.742564	0.908044	-1.767847
2	6	0	0.476144	0.233660	-1.705349
3	6	0	-0.583508	1.171814	-1.627762
4	6	0	-1.916963	0.648731	-1.660102
5	1	0	-2.763917	1.285395	-1.869747
6	6	0	-2.042324	-0.732114	-1.595028
7	6	0	-0.955213	-1.650248	-1.545334
8	6	0	0.329466	-1.171474	-1.595047
9	6	0	1.587320	-1.879062	-1.434328
10	6	0	2.809887	-1.277669	-1.867025
11	1	0	3.657762	-1.894000	-2.131842
12	1	0	1.556679	-2.959568	-1.367269
13	1	0	-3.062674	-1.162272	-1.748461
14	1	0	-1.159937	-2.705829	-1.422447
15	6	0	0.029651	2.463509	-1.533333
16	6	0	1.447359	2.294586	-1.669641
17	1	0	-0.481457	3.410489	-1.473011
18	1	0	2.170408	3.094966	-1.658601
19	6	0	2.946347	0.123615	-1.827225
20	1	0	3.892946	0.587854	-2.067804
21	26	0	0.776749	1.334637	0.051294
22	6	0	-0.407886	0.976544	1.319580
23	6	0	1.549814	2.502519	1.124143
24	8	0	-1.186288	0.829775	2.155861
25	8	0	2.021431	3.316131	1.788507
26	26	0	-3.482383	-0.376725	-0.035898
27	6	0	-3.147208	-1.902410	0.859143
28	6	0	-4.029321	0.387665	1.446451
29	6	0	-5.014606	0.124004	-0.774892
30	8	0	-3.103548	-2.912815	1.413441
31	8	0	-4.373867	0.907746	2.413136
32	8	0	-6.076098	0.291069	-1.204817
33	26	0	2.657387	-0.779877	0.117180
34	6	0	1.421834	-1.150269	1.381851
35	6	0	3.794819	-2.083006	0.527096
36	6	0	3.679054	0.447588	0.942245
37	8	0	0.728035	-1.580017	2.193620
38	8	0	4.513410	-2.927803	0.829575
39	8	0	4.369580	1.213152	1.449005

 Table S66. The theoretical Cartesian coordinates (in Å) for the structure Fe38-3 of $C_{12}H_8Fe_3(CO)_8$ using M06-L method.

Table S67. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe14-1, Fe14-2 of $C_{12}H_8FeCO_4$ using M06-L.

Fe14-	1	Fe14-2			
A" 25(0)	A! 9/1(1/)	A 24(0)	A 817(14)		
A'' 38(0)	A'' 8/3(1)	A 34(0)	A 877(14)		
A' 52(0)	A'' 905(0)	A = 52(0)	$\Delta 886(4)$		
$\Delta' 70(0)$	$\Delta' 919(0)$	A 69(0)	$\Delta 910(0)$		
A" 78(0)	A'' 943(0)	A 87(1)	A 918(5)		
A' 86(0)	A" 975(0)	A 92(0)	A 973(0)		
A" 89(0)	A' 984(1)	A 93(0)	A 980(1)		
A' 107(1)	A' 1025(9)	A 108(1)	A 1032(4)		
A" 129(0)	A" 1054(2)	A 121(0)	A 1044(1)		
A' 130(0)	A' 1072(1)	A 130(0)	A 1069(1)		
A' 171(2)	A' 1087(12)	A 154(16)	A 1110(14)		
A' 222(6)	A" 1128(3)	A 210(1)	A 1121(3)		
A" 249(0)	A" 1187(0)	A 233(1)	A 1190(2)		
A' 369(58)	A' 1208(4)	A 259(26)	A 1208(4)		
A" 383(0)	A" 1232(1)	A 374(0)	A 1213(2)		
A" 401(3)	A" 1263(1)	A 384(0)	A 1259(2)		
A' 412(3)	A' 1268(0)	A 390(3)	A 1277(3)		
A" 418(0)	A" 1325(0)	A 419(4)	A 1348(5)		
A' 420(2)	A' 1344(6)	A 422(3)	A 1380(3)		
A' 441(5)	A' 1418(3)	A 428(3)	A 1434(9)		
A' 451(14)	A" 1424(1)	A 445(31)	A 1445(3)		
A' 462(0)	A' 1468(2)	A 461(5)	A 1470(28)		
A" 466(4)	A' 1477(5)	A 470(19)	A 1477(6)		
A' 478(23)	A" 1501(1)	A 472(4)	A 1517(8)		
A' 489(12)	A" 1536(6)	A 474(2)	A 1551(11)		
A" 502(1)	A' 1640(9)	A 481(0)	A 1597(34)		
A" 520(1)	A' 1653(8)	A 521(1)	A 1647(1)		
A' 563(7)	A" 1666(1)	A 557(5)	A 1659(2)		
A" 563(0)	A" 2060(956)	A 563(1)	A 2051(1004)		
A' 594(68)	A' 2078(572)	A 574(5)	A 2069(574)		
A" 597(2)	A' 2089(1158)	A 595(58)	A 2080(1050)		
A" 631(72)	A' 2146(523)	A 608(19)	A 2137(571)		
A' 639(43)	A' 3170(2)	A 629(78)	A 3172(0)		
A' 650(156)	A" 3170(0)	A 649(105	A 3173(1)		
A" 667(2)	A" 3179(6)	A 652(36)	A 3182(12)		
A' 684(4)	A' 3179(22)	A 673(3)	A 3183(9)		
A" 704(10)	A" 3189(2)	A 701(0)	A 3195(26)		
A" 768(0)	A" 3193(37)	A 727(22)	A 3195(18)		
A' 782(39)	A' 3194(21)	A 761(1)	A 3214(1)		
A' 814(27)	A' 3204(9)	A 776(1)	A 3235(8)		
A' 822(0)		A 814(63)			

Table S68. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe13-1, Fe13-2 of $C_{12}H_8FeCO_3$ using M06-L.

Fe13-	1	Fe13-2				
A" 28(0)	A" 857(2)	Α	40(0)	A 891(0)		
A' 66(1)	A' 875(4)	Α	60(0)	A 912(1)		
A' 75(0)	A" 895(3)	Α	72(0)	A 931(4)		
A" 78(0)	A" 972(1)	Α	80(0)	A 959(1)		
A" 82(0)	A' 978(1)	Α	81(0)	A 964(0)		
A' 95(0)	A' 1018(5)	Α	93(0)	A 1015(3)		
A" 124(1)	A" 1061(4)	Α	131(1)	A 1047(1)		
A' 138(2)	A' 1074(1)	Α	161(1)	A 1064(4)		
A' 188(5)	A' 1080(1)	Α	213(2)	A 1103(11)		
A" 225(3)	A" 1127(0)	Α	252(3)	A 1111(1)		
A' 289(8)	A" 1182(29)	Α	290(3)	A 1152(4)		
A' 386(3)	A" 1206(0)	Α	333(6)	A 1192(3)		
A" 387(1)	A' 1209(17)	Α	394(1)	A 1203(0)		
A" 426(0)	A' 1264(1)	Α	402(4)	A 1247(3)		
A' 430(5)	A" 1271(2)	Α	417(4)	A 1276(4)		
A" 448(2)	A' 1328(2)	А	453(15)	A 1336(3)		
A" 456(0)	A" 1330(52)	Α	456(1)	A 1369(7)		
A' 463(3)	A' 1404(12)	Α	470(8)	A 1390(18)		
A' 475(2)	A" 1417(19)	Α	473(5)	A 1427(0)		
A" 484(2)	A" 1455(14)	Α	478(4)	A 1441(27)		
A' 490(2)	A' 1464(60)	Α	491(25)	A 1481(2)		
A' 506(14)	A' 1477(1)	Α	514(1)	A 1501(40)		
A" 511(0)	A" 1541(0)	Α	537(25)	A 1516(6)		
A' 551(22)	A' 1603(105)	Α	553(49)	A 1545(3)		
A' 566(42)	A' 1617(29)	Α	557(14)	A 1629(1)		
A" 582(4)	A" 1644(61)	Α	593(6)	A 1677(3)		
A" 591(48)	A' 2062(804)	A	598(4)	A 2057(718)		
A' 609(56)	A" 2067(667)	Α	613(62)	A 2072(873)		
A' 621(55)	A' 2121(882)	Α	624(62)	A 2119(887)		
A" 655(2)	A' 3171(4)	A	668(6)	A 3171(6)		
A' 688(6)	A" 3171(12)	Α	687(5)	A 3173(1)		
A" 714(3)	A" 3191(1)	A	701(3)	A 3183(17)		
A" 755(1)	A' 3192(32)	Α	736(29)	A 3189(4)		
A' 771(40)	A" 3204(19)	A	764(8)	A 3196(31)		
A' 802(45)	A' 3204(1)	A	798(40)	A 3203(11)		
A' 809(12)	A" 3229(2)	A	816(2)	A 3207(3)		
A" 846(3)	A' 3241(5)	A	860(16)	A 3228(13)		
A' 846(5)		A	885(5)			

Table S69. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe12-1**, **Fe12-2** of $C_{12}H_8FeCO_2$ using M06-L.

	Fe12	2-1	Fe12-2				
Α	45(0)	A 893(1)	Α	40(0)	A 914(3)		
Α	59(1)	A 970(0)	Α	64(0)	A 948(2)		
Α	72(1)	A 978(0)	Α	81(0)	A 960(1)		
Α	90(1)	A 1033(3)	Α	93(1)	A 1033(1)		
Α	133(3)	A 1055(3)	А	154(5)	A 1044(3)		
Α	146(0)	A 1072(0)	А	163(1)	A 1063(3)		
Α	186(0)	A 1084(5)	Α	213(1)	A 1101(21)		
Α	253(0)	A 1127(0)	А	287(3)	A 1121(1)		
Α	320(5)	A 1185(4)	А	313(1)	A 1176(4)		
Α	368(5)	A 1208(4)	А	333(10)	A 1203(6)		
Α	429(3)	A 1215(4)	А	382(7)	A 1216(1)		
Α	443(4)	A 1269(0)	Α	417(2)	A 1255(1)		
Α	449(2)	A 1281(2)	Α	421(2)	A 1277(6)		
Α	476(3)	A 1338(2)	Α	461(2)	A 1359(15)		
Α	480(2)	A 1354(10)	Α	473(1)	A 1369(5)		
Α	483(2)	A 1413(4)	Α	479(1)	A 1434(3)		
Α	487(7)	A 1429(2)	Α	499(14)	A 1437(3)		
Α	515(2)	A 1462(4)	Α	526(1)	A 1460(48)		
Α	535(6)	A 1470(9)	Α	540(18)	A 1486(24)		
Α	550(6)	A 1475(0)	Α	555(29)	A 1505(13)		
А	570(29)	A 1537(5)	Α	566(1)	A 1526(10)		
А	581(31)	A 1597(18)	Α	585(39)	A 1557(26)		
А	620(4)	A 1617(12)	Α	596(7)	A 1616(7)		
Α	641(9)	A 1637(15)	А	643(18)	A 1642(0)		
А	657(36)	A 2022(864)	А	654(19)	A 2021(774)		
Α	694(4)	A 2062(1410)	A	683(2)	A 2065(1340)		
Α	709(3)	A 3176(2)	А	692(16)	A 3177(2)		
Α	739(3)	A 3176(7)	Α	706(2)	A 3187(3)		
Α	761(2)	A 3191(10)	Α	763(1)	A 3187(9)		
А	793(63)	A 3194(16)	А	782(45)	A 3197(6)		
А	812(2)	A 3203(17)	А	811(1)	A 3200(19)		
А	831(19)	A 3203(5)	Α	842(14)	A 3209(9)		
Α	860(1)	A 3234(2)	Α	880(5)	A 3219(2)		
Α	872(1)	A 3248(3)	Α	894(9)	A 3239(9)		
Α	889(2)		Α	904(1)			

Table S70. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe28-1, Fe28-2, Fe28-3, Fe28-4 of $C_{12}H_8Fe_2CO_8$ using M06-L.

Fe2	8-1	Fe	e28-2	Fe	28-3	Fe2	28-4
Fe2: A 22(0) A 28(0) A 34(0) A 39(0) A 47(0) A 51(0) A 56(0) A 70(1) A 76(0) A 80(0) A 86(1) A 90(0) A 92(0) A 92(0) A 92(0) A 94(0) A 105(2) A 106(1) A 117(4) A 125(0) A 131(2) A 148(10) A 226(19) A 364(78) A 374(0) A 388(2) A 400(3) A 417(10) A 425(1) A 425(1) A 440(3) A 4466(9) A	8-1 A 634(147) A 646(273) A 659(5) A 659(5) A 675(2) A 703(6) A 764(5) A 776(6) A 814(41) A 814(6) A 823(2) A 837(12) A 872(5) A 909(1) A 942(0) A 976(1) A 942(0) A 976(1) A 942(0) A 976(1) A 942(0) A 1021(5) A 1047(1) A 1095(6) A 1124(7) A 1191(0) A 1207(4) A 1207(4) A 1217(3) A 1261(1) A 1262(1) A 1323(6) A 1343(5) A 1343(5) A 1399(2) A 1454(1) A 1646(3) A 1650(8) A 2044(926) A 2074(829) A 2080(544)	A $11(0)$ A $25(0)$ A $34(0)$ A $44(1)$ A $55(0)$ A $34(0)$ A $444(1)$ A $57(0)$ A $64(0)$ A $77(0)$ A $64(0)$ A $79(2)$ A $83(0)$ A $84(1)$ A $92(0)$ A $84(1)$ A $92(0)$ A $84(1)$ A $92(0)$ A $104(0)$ A $104(0)$ 	A 639(34) A 648(162) A 651(122) A 665(5) A 685(15) A 771(24) A 783(0) A 803(22) A 811(2) A 800(4) A 909(2) A 921(2) A 1009(8) A 1031(5) A 1071(1) A 1202(1) A 1227(1)<	Fe2A $27(0)$ A $35(0)$ A $41(0)$ A $46(0)$ A $53(0)$ A $56(0)$ A $56(0)$ A $56(0)$ A $72(6)$ A $74(0)$ A $86(0)$ A $91(2)$ A $95(0)$ A $98(0)$ A $104(1)$ A $107(1)$ A $104(1)$ A $102(16)$ A $122(16)$ A $323(1)$ A $365(1)$ A $385(1)$ A $385(1)$ A $388(1)$ A $416(10)$ A $422(2)$ A $426(2)$ A $422(8)$ A $463(7)$ A $466(6)$ A $477(2)$ A $472(6)$ A $472(6)$ A $472(6)$ A $472(6)$ A<	28-3 A 633(27) A 642(114) A 651(78) A 652(78) A 677(10) A 702(1) A 736(19) A 775(2) A 782(12) A 807(10) A 782(12) A 807(10) A 782(12) A 807(10) A 782(12) A 807(10) A 817(28) A 852(11) A 872(6) A 898(11) A 920(4) A 934(1) A 975(0) A 1011(3) A 1039(1) A 1039(1) A 1037(0) A 112(12) A 112(12) A 1203(2) A 1211(2) A 1233(9) A 1376(7) A 1421(4)	Fe2A $21(0)$ A $25(0)$ A $28(0)$ A $34(0)$ A $42(0)$ A $44(1)$ A $52(0)$ A $63(0)$ A $82(1)$ A $86(1)$ A $82(1)$ A $86(1)$ A $82(1)$ A $86(1)$ A $91(0)$ A $102(1)$ A $102(1)$ A $109(1)$ A $118(1)$ A $122(2)$ A $272(1)$ A $301(31)$ A $379(1)$ A $394(18)$ A $397(16)$ A $413(15)$ A $427(2)$ A $430(0)$ A $450(14)$ A $464(8)$ A $467(23)$ A $468(11)$ A $473(7)$ A $474(6)$ A $480(14)$	A 634(67) A 646(280) A 647(16) A 657(2) A 676(0) A 692(18) A 701(5) A 771(3) A 785(20) A 808(1) A 829(10) A 924(12) A 930(12) A 1002(4) A 10039(4) A 1043(8) A 1104(29) A 1124(2) A 1250(1) A
$\begin{array}{ccc} A & 4/4(0) \\ A & 476(15) \\ A & 485(4) \\ A & 487(13) \\ A & 490(4) \\ A & 518(2) \\ A & 555(4) \end{array}$	A 2062(699) A 2074(829) A 2080(544) A 2088(1484) A 2130(994) A 2149(300)	$\begin{array}{ccc} A & 4/8(24) \\ A & 481(8) \\ A & 485(25) \\ A & 490(12) \\ A & 507(1) \\ A & 528(11) \\ A & 560(9) \end{array}$	A 2064(500) A 2069(748) A 2085(508) A 2089(779) A 2126(1069) A 2149(481)	$ \begin{array}{c} A & 472(6) \\ A & 475(4) \\ A & 477(7) \\ A & 483(1) \\ A & 493(1) \\ A & 522(7) \\ A & 552(6) \end{array} $	A 2063(694) A 2066(687) A 2074(1338) A 2076(184) A 2122(1249) A 2143(394)	$ \begin{array}{c} A & 473(7) \\ A & 474(6) \\ A & 480(14) \\ A & 482(1) \\ A & 492(4) \\ A & 522(17) \\ A & 555(5) \end{array} $	A 2060(856) A 2063(1518) A 2078(578) A 2088(1230) A 2130(882) A 2146(389)
$\begin{array}{rrrr} A & 556(18) \\ A & 563(0) \\ A & 564(0) \\ A & 592(17) \\ A & 595(58) \\ A & 600(52) \\ A & 623(19) \\ A & 632(31) \end{array}$	A 3173(1) A 3174(1) A 3183(10) A 3185(6) A 3194(3) A 3196(24) A 3196(14) A 3220(3)	$ \begin{array}{c} A & 560(8) \\ A & 564(3) \\ A & 569(1) \\ A & 590(29) \\ A & 593(70) \\ A & 601(49) \\ A & 629(18) \\ A & 633(105) \\ \end{array} $	A 31/2(0) A 3178(5) A 3181(9) A 3184(7) A 3189(2) A 3195(23) A 3203(7) A 3203(8)	A 552(6) A 565(2) A 567(0) A 570(1) A 596(87) A 599(10) A 613(47) A 629(105)	A 3175(0) A 3179(2) A 3184(8) A 3187(6) A 3197(11) A 3201(6) A 3216(0) A 3237(8)	A 556(5) A 565(1) A 566(4) A 570(0) A 595(65) A 608(72) A 615(4) A 633(41)	A 3171(2) A 3177(6) A 3178(5) A 3191(1) A 3192(6) A 3205(7) A 3216(1) A 3238(9)

Table S71. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe27-1, Fe27-2, Fe27-3, Fe27-4 of $C_{12}H_8Fe_2CO_7$ using M06-L.

Fe27-1	Fe	27-2	Fež	27-3	Fe	27-4
Fe27-1 A 22(0) A 649(12) A 29(0) A 658(90) A 35(0) A 658(90) A 35(0) A 682(3) A 45(1) A 706(1) A 55(0) A 750(8) A 57(7) A 767(1) A 65(2) A 791(42) A 76(0) A 808(5) A 80(1) A 835(3) A 84(0) A 848(3) A 88(1) A 865(5) A 91(0) A 886(2) A 96(2) A 905(2) A 100(6) A 971(9) A 110(2) A 983(1) A 111(1) A 1023(1) A 141(4) A 1041(4) A 143(2) A 1068(2)	Fe 0 A 21(0) 0 A 34(0) A 34(0) A 34(0) A 45(0) A 54(0) A 54(0) A 64(0) A 70(0) A 78(0) A 80(0) A 80(0) A 109(0) A 110(0) A 128(0) A 142(1) A 128(0) A 143(0) A 183(12) A 220(2) A 351(32) A 371(27) A 400(2) A 406(3) A 416(1) A	$\begin{array}{c} \textbf{27-2} \\ \hline \textbf{A } 650(136) \\ \textbf{A } 673(23) \\ \textbf{A } 693(7) \\ \textbf{A } 694(6) \\ \textbf{A } 761(22) \\ \textbf{A } 787(12) \\ \textbf{A } 818(11) \\ \textbf{A } 824(4) \\ \textbf{A } 836(15) \\ \textbf{A } 824(7) \\ \textbf{A } 836(15) \\ \textbf{A } 882(7) \\ \textbf{A } 899(2) \\ \textbf{A } 912(0) \\ \textbf{A } 938(1) \\ \textbf{A } 961(0) \\ \textbf{A } 961(0) \\ \textbf{A } 961(0) \\ \textbf{A } 966(1) \\ \textbf{A } 1004(6) \\ \textbf{A } 1004(3) \\ \textbf{A } 1004(3) \\ \textbf{A } 1110(6) \\ \textbf{A } 1143(2) \\ \textbf{A } 1187(1) \\ \textbf{A } 1192(0) \\ \textbf{A } 1241(4) \\ \textbf{A } 1253(0) \\ \textbf{A } 1308(11) \\ \textbf{A } 1337(2) \\ \textbf{A } 1357(3) \\ \textbf{A } 1395(12) \\ \textbf{A } 1442(0) \\ \textbf{A } 1463(9) \\ \textbf{A } 1500(12) \\ \textbf{A } 1625(2) \\ \textbf{A } 1625(2) \\ \textbf{A } 2061(502) \\ \end{array}$	Fe2A $27(0)$ A $31(0)$ A $31(0)$ A $31(0)$ A $41(0)$ A $49(0)$ A $57(0)$ A $65(1)$ A $76(0)$ A $77(0)$ A $85(1)$ A $90(0)$ A $105(1)$ A $107(1)$ A $126(1)$ A $126(1)$ A $126(1)$ A $126(1)$ A $126(1)$ A $126(1)$ A $373(0)$ A $234(0)$ A $373(0)$ A $383(1)$ A $403(8)$ A $417(6)$ A $427(3)$ A $428(4)$ A $453(11)$ A $457(1)$ A $470(4)$ A $472(4)$ A $475(3)$ A $480(10)$	27-3 A 651(112) A 663(8) A 684(8) A 698(5) A 720(22) A 772(2) A 789(25) A 806(2) A 849(17) A 875(10) A 886(2) A 911(1) A 919(1) A 925(4) A 1012(15) A 10023(8) A 1052(1) A 1101(17) A 1101(17) A 11012(15) A 1052(1) A 1052(1) A 11012(15) A 1023(8) A 1052(1) A 1101(17) A 1111(1) A 1153(9) A 1200(0) A 1246(8) A 1271(5) A 1337(0) A 1370(12) A 1480(0) A 1428(18) A 1438(12) A 1480(0) A 1495(53) A 1502(6) A 1531(10) A 1643(20) A 2053(1102) A 2053(624)	A 21(0) A 27(0) A 39(0) A 48(0) A 51(0) A 51(0) A 51(0) A 51(0) A 51(0) A 51(0) A 71(1) A 81(0) A 74(1) A 81(0) A 74(1) A 81(0) A 93(0) A 93(0) A 93(0) A 93(0) A 93(1) A 106(0) A 106(0) A 106(3) A 237(2) A 237(2) A 237(0) A 332(9) A 373(0) A 379(0) A 425(1) A 441(15) A 453(2) <	A 649(83) A 660(13) A 687(3) A 700(0) A 728(17) A 768(4) A 795(41) A 813(7) A 854(17) A 854(17) A 878(4) A 89(8) A 912(2) A 916(1) A 942(4) A 942(4) A 966(0) A 1012(3) A 1027(0) A 1027(0) A 1027(0) A 1022(1) A 1104(10) A 1102(1) A 1102(2) A 1104(10) A 1146(4) A 1182(2) A 1203(1) A 1241(1) A 1241
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c cccc} $	A 2032(819) A 2061(502) A 2064(379) A 2077(431) A 2092(1359)	$ \begin{array}{c c} A & 473(3) \\ A & 480(10) \\ A & 487(0) \\ A & 491(30) \\ A & 513(2) \end{array} $	A 2053(1102) A 2053(624) A 2063(1310) A 2066(725) A 2079(929)	$ \begin{array}{c} A & 476(1) \\ A & 483(6) \\ A & 486(0) \\ A & 508(43) \\ A & 518(1) \end{array} $	A 2028(1199) A 2047(367) A 2059(909) A 2066(1100) A 2077(419)
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} A & 521(5) \\ A & 546(72) \\ A & 559(4) \\ A & 566(49) \\ A & 566(2) \\ A & 593(56) \\ A & 602(18) \\ A & 613(59) \end{array}$	A 2092(1339) A 2111(1140) A 2149(529) A 3170(8) A 3173(0) A 3177(3) A 3183(13) A 3185(3)	$ \begin{array}{c} A & 513(2) \\ A & 539(16) \\ A & 551(36) \\ A & 557(22) \\ A & 568(0) \\ A & 588(22) \\ A & 594(3) \\ A & 605(68) \end{array} $	A 2079(929) A 2121(1684) A 2132(43) A 3175(6) A 3184(4) A 3192(4) A 3192(4) A 3206(13)	$ \begin{array}{c} A & 516(1) \\ A & 537(19) \\ A & 551(38) \\ A & 554(10) \\ A & 571(1) \\ A & 592(11) \\ A & 599(7) \\ A & 608(67) \end{array} $	A 2077(419) A 2114(1182) A 2134(522) A 3172(4) A 3185(3) A 3190(3) A 3194(3) A 3204(12)
A 604(80) A 3206(7 A 616(106) A 3226(1) A 633(37) A 3244(1)	A 621(50) A 626(43) A 632(48)	A 3196(27) A 3197(13) A 3199(15)	$ \begin{vmatrix} A & 612(62) \\ A & 620(134) \\ A & 634(54) \end{vmatrix} $	A 3206(3) A 3209(3) A 3232(7)	A 611(35) A 623(79) A 633(38)	A 3208(5) A 3209(0) A 3229(13)

Table S72. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe26-1, Fe26-2, Fe26-3, Fe26-4 of $C_{12}H_8Fe_2CO_6$ using M06-L.

Fe26-1	Fe26-2	Fe26-3	Fe26-4
A18(0)A694(5)A25(1)A712(2)A40(4)A743(25)A50(1)A771(39)A67(0)A794(4)A70(0)A810(2)A76(2)A845(3)A78(0)A859(7)A79(0)A866(7)A84(1)A884(1)A99(0)A923(28)A115(12)A982(1)A123(8)A 1021(3)A144(1)A 1031(0)A158(1)A 1062(0)A227(1)A 1070(2)A309(10)A 1118(3)A346(26)A 1153(3)A358(6)A 1192(9)A380(4)A 1207(16)A384(5)A 1259(14)A391(16)A 1267(7)A414(24)A 1331(1)A432(40)A 1375(32)A438(12)A 1384(7)A455(4)A 1430(75)A460(1)A 1447(1)A466(12)A 1466(9)A472(4)A 1550(169)A478(11)A 1591(149)A484(2)A 1633(50)A498(17)A 2029(741)A505(16)A 2076(1190)A51(11)A 2081(883)A540(40)A 2082(1370)A561(43)A 2132(810)A567(62)A 3175(9) <t< th=""><td>A$29(0)$A$694(6)$A$51(0)$A$720(28)$A$54(2)$A$761(28)$A$57(0)$A$775(4)$A$66(1)$A$790(16)$A$82(1)$A$850(14)$A$82(1)$A$850(14)$A$87(1)$A$867(15)$A$90(0)$A$873(6)$A$98(2)$A$890(8)$A$104(3)$A$894(1)$A$106(3)$A$924(42)$A$114(2)$A$982(1)$A$128(4)$A$1017(0)$A$141(12)$A$1020(2)$A$154(2)$A$1064(1)$A$299(4)$A$1064(1)$A$248(12)$A$1114(4)$A$293(3)$A$1135(4)$A$360(11)$A$1190(3)$A$366(3)$A$1207(32)$A$383(3)$A$1259(22)$A$395(3)$A$1264(3)$A$413(9)$A$1327(10)$A$433(7)$A$1338(15)$A$439(19)$A$1368(5)$A$447(2)$A$1390(18)$A$452(0)$A$1426(77)$A$458(5)$A$1443(10)$A$452(0)$A$1227(10)$A$458(5)$A$1443(10)$A$490(26)$A$1627(60)$</td><td>A$29(0)$A$679(8)$A$36(0)$A$685(21)$A$37(2)$A$701(9)$A$45(0)$A$740(21)$A$60(0)$A$806(8)$A$70(0)$A$849(20)$A$74(0)$A$855(2)$A$78(1)$A$880(7)$A$81(1)$A$893(0)$A$95(0)$A$904(1)$A$93(0)$A$909(3)$A$96(0)$A$943(1)$A$119(8)$A$956(2)$A$128(1)$A$1001(17)$A$135(4)$A$1042(1)$A$157(5)$A$1047(0)$A$219(15)$A$1089(16)$A$247(67)$A$1097(5)$A$295(4)$A$1142(4)$A$37(3)$A$1163(14)$A$378(4)$A$1188(2)$A$386(2)$A$1229(3)$A$395(1)$A$1247(9)$A$405(11)$A$1306(0)$A$446(2)$A$1431(9)$A$450(11)$A$1396(0)$A$446(2)$A$1431(9)$A$450(11)$A$1432(2)$A$450(11)$A$1442(5)$A$459(1)$A$1442(5)$A$459(1)$A$1442(5)$A$450(11)$A$1437(11)$<</td><td>A$17(0)$A$685(1)$A$31(0)$A$709(4)$A$52(0)$A$739(33)$A$63(0)$A$769(12)$A$67(0)$A$780(12)$A$74(0)$A$794(19)$A$85(0)$A$837(12)$A$88(0)$A$861(19)$A$96(0)$A$881(2)$A$98(0)$A$896(6)$A$104(0)$A$924(4)$A$121(0)$A$972(4)$A$140(1)$A$968(8)$A$144(0)$A$972(4)$A$149(1)$A$1021(0)$A$173(1)$A$1098(2)$A$224(2)$A$1108(4)$A$275(3)$A$1149(1)$A$314(7)$A$1195(7)$A$331(6)$A$1203(2)$A$388(3)$A$1236(1)$A$395(0)$A$1256(0)$A$401(3)$A$1324(4)$A$407(15)$A$1354(5)$A$416(9)$A$1379(1)$A$432(3)$A$1408(3)$A$438(5)$A$1447(1)$A$446(2)$A$1448(6)$A$416(9)$A$1379(1)$A$432(3)$A$1408(3)$A$438(5)$A$1417(1)$A$446(2)$A$1448(6)$<t< td=""></t<></td></t<>	A $29(0)$ A $694(6)$ A $51(0)$ A $720(28)$ A $54(2)$ A $761(28)$ A $57(0)$ A $775(4)$ A $66(1)$ A $790(16)$ A $82(1)$ A $850(14)$ A $82(1)$ A $850(14)$ A $87(1)$ A $867(15)$ A $90(0)$ A $873(6)$ A $98(2)$ A $890(8)$ A $104(3)$ A $894(1)$ A $106(3)$ A $924(42)$ A $114(2)$ A $982(1)$ A $128(4)$ A $1017(0)$ A $141(12)$ A $1020(2)$ A $154(2)$ A $1064(1)$ A $299(4)$ A $1064(1)$ A $248(12)$ A $1114(4)$ A $293(3)$ A $1135(4)$ A $360(11)$ A $1190(3)$ A $366(3)$ A $1207(32)$ A $383(3)$ A $1259(22)$ A $395(3)$ A $1264(3)$ A $413(9)$ A $1327(10)$ A $433(7)$ A $1338(15)$ A $439(19)$ A $1368(5)$ A $447(2)$ A $1390(18)$ A $452(0)$ A $1426(77)$ A $458(5)$ A $1443(10)$ A $452(0)$ A $1227(10)$ A $458(5)$ A $1443(10)$ A $490(26)$ A $1627(60)$	A $29(0)$ A $679(8)$ A $36(0)$ A $685(21)$ A $37(2)$ A $701(9)$ A $45(0)$ A $740(21)$ A $60(0)$ A $806(8)$ A $70(0)$ A $849(20)$ A $74(0)$ A $855(2)$ A $78(1)$ A $880(7)$ A $81(1)$ A $893(0)$ A $95(0)$ A $904(1)$ A $93(0)$ A $909(3)$ A $96(0)$ A $943(1)$ A $119(8)$ A $956(2)$ A $128(1)$ A $1001(17)$ A $135(4)$ A $1042(1)$ A $157(5)$ A $1047(0)$ A $219(15)$ A $1089(16)$ A $247(67)$ A $1097(5)$ A $295(4)$ A $1142(4)$ A $37(3)$ A $1163(14)$ A $378(4)$ A $1188(2)$ A $386(2)$ A $1229(3)$ A $395(1)$ A $1247(9)$ A $405(11)$ A $1306(0)$ A $446(2)$ A $1431(9)$ A $450(11)$ A $1396(0)$ A $446(2)$ A $1431(9)$ A $450(11)$ A $1432(2)$ A $450(11)$ A $1442(5)$ A $459(1)$ A $1442(5)$ A $459(1)$ A $1442(5)$ A $450(11)$ A $1437(11)$ <	A $17(0)$ A $685(1)$ A $31(0)$ A $709(4)$ A $52(0)$ A $739(33)$ A $63(0)$ A $769(12)$ A $67(0)$ A $780(12)$ A $74(0)$ A $794(19)$ A $85(0)$ A $837(12)$ A $88(0)$ A $861(19)$ A $96(0)$ A $881(2)$ A $98(0)$ A $896(6)$ A $104(0)$ A $924(4)$ A $121(0)$ A $972(4)$ A $140(1)$ A $968(8)$ A $144(0)$ A $972(4)$ A $149(1)$ A $1021(0)$ A $173(1)$ A $1098(2)$ A $224(2)$ A $1108(4)$ A $275(3)$ A $1149(1)$ A $314(7)$ A $1195(7)$ A $331(6)$ A $1203(2)$ A $388(3)$ A $1236(1)$ A $395(0)$ A $1256(0)$ A $401(3)$ A $1324(4)$ A $407(15)$ A $1354(5)$ A $416(9)$ A $1379(1)$ A $432(3)$ A $1408(3)$ A $438(5)$ A $1447(1)$ A $446(2)$ A $1448(6)$ A $416(9)$ A $1379(1)$ A $432(3)$ A $1408(3)$ A $438(5)$ A $1417(1)$ A $446(2)$ A $1448(6)$ <t< td=""></t<>

ıg Fe25-3 Fe25-2 Fe25-1 ____

Table S73.	Harmonic	vibrational	frequencies	(in cm ⁻¹) ar	d infrared	intensities	(in parentheses,	in km/mol)	for the
structure Fe	e25-1, Fe	25-2, Fe2	25-3 of C ₁₂ H ₈	Fe ₂ CO ₅ usi	ng M06-L				

Fe	23-1		ге 2 э-2			rez:	5-3
A" 37(0) A" 42(0) A' 69(0) A" 73(0) A' 84(0) A' 89(0) A' 90(1) A' 100(0) A' 123(0) A' 123(0) A' 125(0) A' 125(0) A' 125(1) A' 125(1) A' 165(1) A' 130(2) A' 393(4) A' 403(7) A' 447(0) A' 500(22) A' 503(2) A' 512(0) A' 528(4) A' 545(12) A' 545(12) A' 557(29) A' 567(74) A' 585(38) A' 587(64)	A' 743(1) A' 764(1) A' 772(53) A' 814(13) A' 840(16) A'' 853(3) A'' 883(0) A'' 899(3) A' 902(0) A'' 965(0) A' 968(4) A'' 1020(1) A' 1034(1) A' 1020(1) A' 968(4) A'' 1020(1) A' 1034(1) A' 1020(1) A' 1034(1) A' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(1) A'' 1020(2) A'' 1107(0) A'' 1206(2) A'' 1226(0) A'' 1226(0) A'' 1226(0) A'' 1226(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1242(0) A'' 1256(1) A'' 126(2) A'' 1473(3) A'' 1519(5) A'' 1537(3) A'' 1537(3) A'' 1561(4) A'' 1606(3) A'' 2023(13) A'' 2036(6) A'' 2059(1221) A'' 2111(1122) A'' 3182(3) A'' 3182(0)	A 320 A 390 A 610 A 390 A 610 A 830 A 920 A 920 A 920 A 920 A 920 A 920 A 102 A 102 A 102 A 102 A 102 A 102 A 102 A 102 A 139 A 157 A 174 A 1860 A 3510 A 3500 A 3650 A 3600 A 5900 A 6040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	724(5) 766(39) 797(8) 824(9) 849(2) 869(4) 873(8) 883(0) 898(3) 963(3) 974(0) 1025(1) 1042(1) 1059(3) 1078(3) 1113(1) 1167(2) 1197(2) 1203(3) 1252(4) 1252(4) 1280(0) 1334(2) 1379(5) 1395(7) 1418(4) 1435(9) 1470(2) 1482(6) 1519(1) 1542(12) 1601(37) 1648(17) 2014(91) 2034(66) 055(1189) 067(1432) 108(1188) 3178(7) 3181(4)	A A A A A A A A A A A A A A A A A A A	33(0) 36(0) 65(0) 71(0) 81(1) 87(0) 91(0) 94(1) 112(2) 124(0) 126(0) 151(1) 176(5) 177(6) 190(2) 281(1) 303(1) 330(2) 343(12) 382(4) 401(1) 416(1) 434(7) 439(13) 463(1) 473(5) 478(1) 463(1) 473(5) 478(1) 484(6) 495(1) 499(8) 501(6) 509(16) 535(33) 543(22) 561(40) 574(24) 588(62)	A 734(40) A 756(13) A 774(24) A 809(4) A 851(24) A 867(6) A 872(10) A 908(1) A 908(1) A 908(1) A 908(1) A 908(3) A 1037(3) A 1037(3) A 1038(1) A 1052(1) A 1089(17) A 1122(1) A 1122(1) A 1122(1) A 1122(1) A 1122(2) A 123(2) A 124(6) A 1250(2) A 1286(2) A 1332(39) A 1383(8) A 1412(1) A 1431(8) A 1449(19) A 1479(16) A 1562(18) A 1562(18) A 1572(17) A 1619(7) A 2017(43) A 2030(70) A 2052(1327) A 2060(1334) A 2107(1249) A 3175(2) A 3188(1)
A" 549(33) A" 557(29) A' 567(74) A" 585(38) A' 587(64) A' 613(22) A' 633(46) A" 649(0) A' 659(54) A' 687(7) A" 695(1)	A' 2059(1648) A" 2059(1221) A' 2111(1122) A" 3182(3) A' 3182(0) A' 3195(7) A" 3196(1) A" 3205(19) A' 3205(4) A' 3233(1) A' 3246(3)	A 548 A 557 A 583 A 590 A 604 A 614 A 624 A 624 A 645 A 654 A 654 A 692 A 702	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005(1189) 2007(1432) 108(1188) 3178(7) 3181(4) 3193(9) 3194(4) 3206(10) 3207(9) 3234(1) 3249(2)	A A A A A A A A A A A	537(18) 543(22) 561(40) 574(24) 588(62) 615(84) 628(56) 638(9) 651(16) 676(4) 708(1)	A 2052(1327) A 2060(1334) A 2107(1249) A 3175(2) A 3188(1) A 3192(6) A 3196(2) A 3202(10) A 3210(8) A 3221(2) A 3247(3)

Table S74. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe25-4, Fe25-5 of $C_{12}H_8Fe_2CO_5$ using M06-L.

Table S75. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe24-1, Fe24-2, Fe24-3, Fe24-4 of $C_{12}H_8Fe_2CO_4$ using M06-L.

	Fe	24-1		Fe	24-2	Fe24-3			Fe24-4		
Α	49(0)	A 797(5)	Α	50(0)	A 771(40)	А	29(0)	A 772(44)	А	38(0)	A 794(0)
А	60(0)	A 815(13)	Α	65(0)	A 811(5)	Α	50(0)	A 812(12)	Α	46(0)	A 819(2)
Α	68(0)	A 840(4)	Α	79(0)	A 814(20)	Α	62(0)	A 815(10)	Α	50(1)	A 827(4)
Α	84(0)	A 866(3)	Α	87(0)	A 846(2)	Α	77(0)	A 857(4)	Α	57(1)	A 855(5)
Α	88(0)	A 875(4)	Α	91(0)	A 879(6)	Α	82(1)	A 881(6)	Α	68(0)	A 874(6)
Α	93(0)	A 890(4)	Α	105(0)	A 895(0)	Α	90(1)	A 893(1)	Α	77(0)	A 882(2)
Α	110(1)	A 897(1)	Α	130(0)	A 903(1)	Α	96(0)	A 914(1)	Α	92(3)	A 890(8)
Α	129(0)	A 946(4)	Α	151(0)	A 960(0)	Α	123(0)	A 958(1)	Α	95(0)	A 953(2)
Α	151(1)	A 977(0)	Α	174(2)	A 964(4)	Α	134(1)	A 965(3)	Α	132(8)	A 963(0)
Α	174(5)	A 1024(1)	Α	178(1)	A 1014(1)	Α	165(2)	A 1019(0)	Α	150(0)	A 1028(0)
Α	197(2)	A 1042(1)	Α	197(4)	A 1032(1)	Α	171(2)	A 1034(1)	Α	164(2)	A 1040(2)
Α	219(7)	A 1060(2)	Α	215(1)	A 1051(1)	Α	189(5)	A 1053(1)	Α	185(1)	A 1061(3)
Α	248(1)	A 1077(4)	Α	240(5)	A 1087(7)	Α	208(3)	A 1087(7)	Α	226(1)	A 1074(5)
Α	311(3)	A 1114(0)	Α	298(0)	A 1103(0)	Α	283(1)	A 1105(1)	Α	317(6)	A 1113(3)
Α	342(3)	A 1166(2)	Α	315(1)	A 1187(2)	Α	319(2)	A 1187(2)	Α	338(9)	A 1174(1)
Α	372(1)	A 1195(4)	Α	350(3)	A 1201(1)	А	348(2)	A 1202(0)	А	359(4)	A 1198(2)
А	374(7)	A 1204(6)	А	394(12)	A 1204(2)	А	399(7)	A 1205(1)	А	372(7)	A 1205(4)
Α	402(4)	A 1255(4)	Α	405(2)	A 1239(0)	А	401(5)	A 1240(1)	А	403(2)	A 1256(1)
А	432(4)	A 1275(0)	Α	414(6)	A 1295(0)	А	407(17)	A 1293(0)	Α	429(4)	A 1273(2)
Α	437(2)	A 1334(3)	Α	427(0)	A 1325(1)	Α	431(8)	A 1325(1)	Α	437(4)	A 1295(0)
Α	454(4)	A 1382(4)	Α	440(0)	A 1383(5)	Α	442(0)	A 1389(6)	Α	454(2)	A 1356(12)
Α	457(1)	A 1393(5)	A	452(6)	A 1398(1)	Α	459(4)	A 1399(0)	Α	469(2)	A 1384(2)
A	467(5)	A 1419(4)	A	464(5)	A 1421(3)	A	478(3)	A 1419(1)	A	474(8)	A 1407(1)
A	477(1)	A 1428(8)	A	477(0)	A 1428(2)	A	485(2)	A 1423(4)	A	476(5)	A 1447(4)
A	485(10)	A 1467(0)	A	487(4)	A 1469(4)	A	498(5)	A 1473(4)	A	486(16)	A 1458(1)
A	502(9)	A 1482(10)	A	508(25)	A 1511(7)	A	509(6)	A 1512(4)	A	493(2)	A $14/1(12)$
A	511(10)	A 1514(2)	A	512(1)	A 1527(2)	A	512(6)	A 1526(2)	A	500(17)	A 1490(1)
A	520(18)	A 1537(10)	A	519(17)	A 1558(5)	A	517(25)	A 1553(2)	A	513(4)	A 1545(3)
A	529(19)	A 1593(24)	A	537(51)	A 1601(2)	A	526(10)	A 1603(5)	A	52/(4)	A 15/9(4)
A	540(6)	A 1645(40)	A	542(15)	A 1634(1)	A	538(25)	A 1633(1)	A	536(14)	A 1616(21)
A	545(36)	A 1833(358)	A	544(7)	A 1829(368)	A	545(29)	A 2008(135)	A	552(31)	A 2019(594)
A	539(13)	A 2032(190)	A	550(14)	A 2031(250)	A	554(15)	A 2014(678)	A	501(32)	A 2020(951)
A	505(9)	A $2048(1302)$	A	504(20)	A 204/(1403)	A	505(38)	A 2040(1579)	A	5/9(39)	A 2050(3618)
A	(10(52))	A 2092(1403)	A	5/0(10)	A 2092(1141)	A	5/2(04)	A 2080(1281)	A	590(18)	A 20/3(232)
A	626(40)	A 31/3(0) A 3181(4)	A	595(40) 622(24)	A 3101(2) A 3182(2)	A	640(30)	A 31/9(2) A 3182(2)	A	591(51) 625(4)	A 3103(4)
A	648(55)	A 3101(4)	A	6/6(5)	A 3103(2) A 3106(4)	A	646(5)	A 3102(2) A 2180(4)	A	625(4)	A 3190(1)
A A	657(27)	$\Lambda 3193(12)$		665(83)	A 3108(4)	A	657(11)	$\Lambda 3109(4)$	A	651(71)	$\Lambda 3133(0)$
A A	697(A)	$\Delta 3207(12)$		685(7)	$\Delta 3205(13)$	А Л	688(8)	$\Delta 3205(17)$	А Л	686(1)	$\Delta 3200(3)$
Δ	704(3)	$\Delta 3207(12)$	Δ	694(1)	$\Delta 3203(13)$	Δ	695(2)	$\Delta 3205(17)$	Δ	704(0)	$\Delta 3200(10)$
Δ	737(6)	$\Delta 3230(3)$	Δ	779(7)	$\Delta 3207(11)$	Δ	733(3)	$\Delta 3234(1)$	Δ	720(4)	$\Delta 3230(3)$
Δ	772(40)	$\Delta 3236(2)$	Δ	756(13)	$\Delta 3244(3)$	Δ	763(8)	$\Delta 3251(3)$	Δ	764(24)	$\Delta 3251(1)$
	112(70)	11 52+0(5)	11	, 30(13)	11 3277(3)	11	,05(0)	11 5251(5)	11	707(27)	11 5251(1)

Fe24-5				Fe	24-6		Fe2	4-7
Α	33(0)	A 798(0)	A	34(0)	A 796(0)	Α	30(0)	A 779(1)
Α	42(0)	A 823(4)	B	40(0)	A 815(0)	A	49(0)	A 797(8)
Α	45(1)	A 837(8)	B	45(1)	B 821(8)	A	65(0)	A 838(7)
Α	52(1)	A 875(7)	A	53(1)	B 880(6)	A	79(1)	A 845(20)
Α	69(0)	A 883(16)	A	73(0)	A 887(0)	A	84(1)	A 863(1)
Α	88(0)	A 884(2)	B	79(1)	B 887(33)	A	99(0)	A 869(2)
Α	94(2)	A 906(2)	B	93(2)	A 902(2)	A	120(0)	A 886(3)
Α	95(0)	A 936(1)	A	97(0)	A 948(4)	A	126(1)	A 927(10)
Α	143(3)	A 945(5)	B	147(1)	B 950(5)	A	133(1)	A 979(0)
Α	161(2)	A 1023(4)	A	150(0)	A 1024(1)	A	159(2)	A 1017(5)
Α	166(2)	A 1028(2)	B	182(6)	B 1025(1)	A	171(1)	A 1022(6)
Α	181(4)	A 1050(1)	A	191(1)	A 1038(2)	A	219(1)	A 1057(4)
Α	284(2)	A 1103(14)	A	287(1)	A 1105(12)	A	261(7)	A 1064(2)
Α	313(5)	A 1110(1)	B	319(7)	B 1108(2)	A	292(11)	A 1114(5)
Α	331(0)	A 1169(1)	A	334(2)	B 1175(4)	A	312(2)	A 1155(4)
Α	338(4)	A 1185(7)	B	338(6)	A 1184(4)	A	367(6)	A 1191(0)
Α	354(8)	A 1208(1)	B	367(4)	B 1213(1)	A	391(5)	A 1202(11)
А	376(13)	A 1243(1)	A	377(1)	B 1241(1)	A	404(16)	A 1251(6)
А	399(1)	A 1270(3)	B	393(0)	A 1271(1)	A	421(1)	A 1261(0)
Α	412(1)	A 1330(3)	A	404(3)	A 1318(0)	A	434(2)	A 1331(4)
А	423(2)	A 1372(12)	A	428(2)	B 1368(13)	A	449(4)	A 1368(4)
А	461(2)	A 1404(1)	B	470(2)	A 1399(0)	A	452(1)	A 1381(1)
А	470(3)	A 1421(4)	B	471(1)	B 1413(5)	A	472(1)	A 1413(3)
Α	473(1)	A 1443(9)	A	473(0)	A 1420(6)	A	476(1)	A 1425(15)
А	480(10)	A 1478(2)	B	483(18)	B 1471(8)	A	479(6)	A 1435(3)
А	496(18)	A 1484(2)	B	494(2)	B 1486(4)	A	485(6)	A 1470(1)
A	500(19)	A 1508(1)	A	503(1)	A 1492(3)	A	508(1)	A 1518(7)
Α	512(3)	A 1542(9)	B	511(14)	A 1538(5)	A	517(1)	A 1529(57)
Α	535(14)	A 1554(5)	A	528(16)	A 1552(4)	A	530(32)	A 1587(54)
Α	541(19)	A 1569(8)	B	539(24)	B 1575(7)	A	544(14)	A 1637(27)
A	547(24)	A 2020(721)	A	547(4)	A 2021(5)	A	552(51)	A 1798(278)
A	561(45)	A 2024(760)	B	567(43)	B 2022(1313)		563(4)	A 2032(1437)
A	567(22)	A 2054(3648)	A	570(17)	B 2057(3435)	A	585(20)	A 2056(788)
A	579(17)	A 2076(35)	B	597(18)	A 2075(29)		600(1)	A 2096(1149)
A	596(31)	A 3192(1)	A	599(35)	A 3190(2)		626(2)	A 3157(3)
A	632(1)	A 3195(1)		626(0)	B 3191(0)	A	632(50)	A 3174(9)
A	647(24)	A 3202(5)	A	647(7)	B 3201(10)		667(2)	A 3175(7)
A	651(54)	A 3205(2)	B	650(62)	A 3201(1)	A	680(15)	A 3189(7)
A	656(13)	A 3213(8)		660(4)	B 3214(3)		688(7)	A 3191(11)
A	681(2)	A 3214(3)		678(1)	A 3215(5)		709(8)	A 3205(10)
A	/05(4)	A 3223(1)		/09(3)	B 3223(1)	A	758(19)	A 3232(1)
Α	771(25)	A 3242(5)	B	768(34)	A 3242(6)	A	772(15)	A 3244(3)

Table S76. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe24-5, Fe24-6, Fe24-7 of $C_{12}H_8Fe_2CO_4$ using M06-L.

Fe39-1	Fe39-2	Fe39-3
Fe39-1A23(0)A585(29)A39(5)A602(79)A39(5)A607(63)A44(1)A615(50)A48(2)A617(72)A55(0)A624(96)A60(0)A654(14)A68(1)A692(6)A73(0)A712(8)A77(0)A724(31)A80(1)A783(4)A83(0)A795(8)A86(1)A833(1)A91(1)A843(0)A95(1)A856(6)A99(0)A884(2)A104(6)A894(12)A107(5)A901(3)A110(3)A919(17)A120(1)A925(32)A133(10)A1012(3)A139(2)A1019(0)A156(1)A1052(2)A133(10)A1024(7)A369(18)A1124(7)A369(18)A1124(7)A366(8)A1245(38)A384(0)A1252(6)A406(4)A1352(26)A406(4)A1352(26)A440(40)A1436(25)A444(15)A1453(21)A448(10)A1435(21)A448(10) <td< td=""><td>Fe39-2A13(18)A$608(97)$A31(5)A$613(44)$A33(0)A$617(111)$A48(4)A$623(84)$A$52(14)$A$623(84)$A$52(14)$A$623(84)$A$57(2)$A$644(7)$A$62(3)$A$659(4)$A$71(0)$A$690(4)$A$75(0)$A$714(5)$A$77(1)$A$740(12)$A$80(2)$A$784(7)$A$86(2)$A$800(5)$A$88(0)$A$825(15)$A$91(2)$A$844(9)$A$96(1)$A$882(9)$A$107(14)$A$889(8)$A$111(1)$A$910(1)$A$114(0)$A$942(2)$A$122(0)$A$942(2)$A$122(0)$A$942(2)$A$122(0)$A$942(2)$A$122(0)$A$942(2)$A$122(0)$A$990(2)$A$107(14)$A$889(8)$A$111(1)$A$910(1)$A$124(2)$A$1034(3)$A$226(5)$A$1117(7)$A$295(11)$A$1145(3)$A$328(4)$A$1223(10)$A$388(4)$A$1223(10)$A$388(4)$A$1233(10)$<!--</td--><td>Fe39-3A26(0)A 596(194)A34(0)A 602(36)A36(0)A 609(23)A42(1)A 622(114)A50(1)A 629(47)A53(0)A 639(40)A59(0)A 681(1)A62(0)A 700(0)A70(0)A 710(2)A72(0)A 747(55)A75(0)A 790(2)A79(0)A 809(17)A80(1)A 837(11)A85(0)A 845(6)A89(0)A 854(4)A95(0)A 857(25)A109(0)A 860(7)A116(1)A 896(2)A127(0)A 930(17)A131(1)A 959(1)A143(1)A 986(1)A157(4)A 1017(1)A160(2)A 1078(1)A122(3)A261(5)A 1171(7)A265(1)A 1192(20)A313(3)A 1208(2)A394(1)A 1327(7)A398(4)A 1373(46)A403(27)A 1378(28)A409(2)A 1405(9)A417(3)A 1410(8)A432(2)A 1437(75)A435(5)A 1453(35)A446(9)A 1592(48)A446(9)A 1594(60)A452(7)A 1594(60)A443(5)A 1502(48)A446(26)A 2057(211)<t< td=""></t<></td></td></td<>	Fe39-2A13(18)A $608(97)$ A31(5)A $613(44)$ A33(0)A $617(111)$ A48(4)A $623(84)$ A $52(14)$ A $623(84)$ A $52(14)$ A $623(84)$ A $57(2)$ A $644(7)$ A $62(3)$ A $659(4)$ A $71(0)$ A $690(4)$ A $75(0)$ A $714(5)$ A $77(1)$ A $740(12)$ A $80(2)$ A $784(7)$ A $86(2)$ A $800(5)$ A $88(0)$ A $825(15)$ A $91(2)$ A $844(9)$ A $96(1)$ A $882(9)$ A $107(14)$ A $889(8)$ A $111(1)$ A $910(1)$ A $114(0)$ A $942(2)$ A $122(0)$ A $990(2)$ A $107(14)$ A $889(8)$ A $111(1)$ A $910(1)$ A $124(2)$ A $1034(3)$ A $226(5)$ A $1117(7)$ A $295(11)$ A $1145(3)$ A $328(4)$ A $1223(10)$ A $388(4)$ A $1223(10)$ A $388(4)$ A $1233(10)$ </td <td>Fe39-3A26(0)A 596(194)A34(0)A 602(36)A36(0)A 609(23)A42(1)A 622(114)A50(1)A 629(47)A53(0)A 639(40)A59(0)A 681(1)A62(0)A 700(0)A70(0)A 710(2)A72(0)A 747(55)A75(0)A 790(2)A79(0)A 809(17)A80(1)A 837(11)A85(0)A 845(6)A89(0)A 854(4)A95(0)A 857(25)A109(0)A 860(7)A116(1)A 896(2)A127(0)A 930(17)A131(1)A 959(1)A143(1)A 986(1)A157(4)A 1017(1)A160(2)A 1078(1)A122(3)A261(5)A 1171(7)A265(1)A 1192(20)A313(3)A 1208(2)A394(1)A 1327(7)A398(4)A 1373(46)A403(27)A 1378(28)A409(2)A 1405(9)A417(3)A 1410(8)A432(2)A 1437(75)A435(5)A 1453(35)A446(9)A 1592(48)A446(9)A 1594(60)A452(7)A 1594(60)A443(5)A 1502(48)A446(26)A 2057(211)<t< td=""></t<></td>	Fe39-3A26(0)A 596(194)A34(0)A 602(36)A36(0)A 609(23)A42(1)A 622(114)A50(1)A 629(47)A53(0)A 639(40)A59(0)A 681(1)A62(0)A 700(0)A70(0)A 710(2)A72(0)A 747(55)A75(0)A 790(2)A79(0)A 809(17)A80(1)A 837(11)A85(0)A 845(6)A89(0)A 854(4)A95(0)A 857(25)A109(0)A 860(7)A116(1)A 896(2)A127(0)A 930(17)A131(1)A 959(1)A143(1)A 986(1)A157(4)A 1017(1)A160(2)A 1078(1)A122(3)A261(5)A 1171(7)A265(1)A 1192(20)A313(3)A 1208(2)A394(1)A 1327(7)A398(4)A 1373(46)A403(27)A 1378(28)A409(2)A 1405(9)A417(3)A 1410(8)A432(2)A 1437(75)A435(5)A 1453(35)A446(9)A 1592(48)A446(9)A 1594(60)A452(7)A 1594(60)A443(5)A 1502(48)A446(26)A 2057(211) <t< td=""></t<>

Table S77. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe39-1, Fe39-2, Fe39-3 of $C_{12}H_8Fe_3CO_9$ using M06-L.

Table S78. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for thestructure Fe38-1, Fe38-2, Fe38-3 of $C_{12}H_8Fe_3CO_8$ using M06-L.

Fe38-1
A $26(1)$ A $614(93)$ A $37(4)$ A $619(83)$ A $39(1)$ A $628(65)$ A $445(0)$ A $630(102)$ A $49(1)$ A $655(7)$ A $64(0)$ A $686(1)$ A $69(0)$ A $705(17)$ A $73(1)$ A $715(26)$ A $74(0)$ A $793(3)$ A $78(1)$ A $819(3)$ A $82(0)$ A $830(14)$ A $89(1)$ A $830(14)$ A $89(1)$ A $830(14)$ A $89(1)$ A $830(14)$ A $100(2)$ A $868(0)$ A $110(1)$ A $876(9)$ A $113(10)$ A $904(4)$ A $125(17)$ A $933(6)$ A $139(0)$ A $961(9)$ A $154(2)$ A $1017(1)$ A $161(1)$ A $1034(2)$ A $199(1)$ A $1049(0)$ A $233(19)$ A $1059(5)$ A $242(20)$ A $1111(1)$ A $323(2)$ A $1125(9)$ A $362(17)$ A $1193(1)$ A $373(25)$ A $1245(26)$ A $377(15)$ A $1258(3)$ A $389(5)$ A $1317(3)$ A $403(12)$ A $1374(10)$ A $425(3)$ A $1444(3)$ A $445(15)$ A $1459(30)$