The Chemistry of High Valent Tungsten Chlorides with *N*-Substituted Ureas, Including Urea Self-Protonation Reactions Triggered by WCl₆

Marco Bortoluzzi, Fabio Marchetti, Guido Pampaloni, Stefano Zacchini

New Journal of Chemistry

Supporting Information

Table of contents	Page
Figure S1. Calculated structures of the O- and N-protonated isomers of 2	S2
Table S1. Calculated bonding parameters of the O- and N-protonated isomers of 2	S2
Figure S2. Calculated structure of $[dpu]^{2+}$ (triplet state) and spin density surface	S3
Table S2 . Calculated bonding parameters of $[dpu]^{2+}$ (triplet state)	S3
Figure S3. Calculated structure of PhNC(O)NHPh and spin density surface	S4
Table S3. Calculated bonding parameters of PhNC(O)NHPh	S4
Figures S4-S14. IR spectra	S5-S11

Figure S1. DFT-optimized geometries of the *O*- and *N*-protonated isomers of **2** and relative Gibbs energies. ωB97X DFT functional, C-PCM solvation model for dichloromethane.

O-protonated (0 kcal mol^{-1})

N-protonated (+4.4 kcal mol⁻¹)

Table S1. Selected computed bond	d lengths (Å) and angles	(°) for the O- and N-	protonated isomers of 2.
----------------------------------	--------------------------	-----------------------	--------------------------

2 (O-protor	nated)	2 (N-proto	onated)
С–О	1.309	С-О	1.200
C–N	1.323	C–NH	1.337
	1.330	C-NH ₂	1.537
N–H	1.019	N–H (<i>NH</i>)	1.012
	1.019	N–H (NH_2)	1.028
O–H	0.971		1.036
W-Cl	2.272	W–Cl	2.256
	2.309		2.294
	2.311		2.309
	2.315		2.351
	2.391		2.371
	2.399		2.422
HCl _{shortest}	2.292	HCl _{shortest}	2.212
	2.342		2.527
N-C-O	117.5	HN–C–O	131.8
	121.3	H ₂ N-C-O	118.7
N-C-N	121.2	N-C-N	109.5

Figure S2. DFT-optimized geometry of $[dpu]^{2+}$ (triplet state) and spin density surface (isovalue = 0.01 a.u.). ω B97X DFT functional, C-PCM solvation model for dichloromethane.

Table S2. Selected computed bond lengths (Å) and angles (°) for $[dpu]^{2^+}$ (triplet state).

[dpu] ²⁺		
С–О	1.197	
C–N	1.403	
	1.421	
N–H	1.017	
	1.018	
N–C–O	120.4	
	125.1	
N-C-N	114.4	

Figure S3. DFT-optimized geometry of PhNC(O)NHPh and spin density surface (isovalue = 0.01 a.u.). ω B97X DFT functional, C-PCM solvation model for dichloromethane.

Table S3. Selected computed bond lengths (Å) and angles (°) for PhNC(O)NHPh.

PhNC(O)NHPh		
С–О	1.227	
C–N	1.397	
C–NH	1.368	
N–H	1.011	
N–C–O	123.5	
HN-C-O	120.8	
N-C-N	115.6	

Figure S4. IR spectrum (solid state) of 1a.

Figure S5. IR spectrum (solid state) of 1b.

Figure S6. Comparative view of the IR spectra of 1b (black) and 1,3-diphenylurea (dpu, red).

Figure S7. IR spectrum (solid state) of 2.

Figure S8. Comparative view of the IR spectra of 2 (black) and 1,3-diphenylurea (dpu, red).

Figure S9. IR spectra (solid state) of **3a** (top) and 1,3-dimethylurea (bottom).

Figure S10. IR spectrum (solid state) of 3c.

Figure S11. IR spectrum (solid state) of 4.

Figure S12. IR spectrum (solid state) of 5.

Figure S13. Comparative view of the IR spectra of 5 (black) and 1,3-dimethylurea (dmu, red).

Figure S14. IR spectrum of the reaction mixture $WOCl_4/dpu$.

