Supporting Information

A highly selective colorimetric chemosensor for cyanide and sulfide in aqueous solution: experimental and theoretical studies

Soo Min Kim,^a Minjae Kang,^a Isaac Choi,^a Jae Jun Lee,^b* Cheal Kim^{a,b}*

^aNowon Institute of Education for the Gifted at Seoultech, Seoul National University of Science and Technology, Seoul 139-743, Korea

^bDepartment of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: idtwar@gmail.com and <u>chealkim@seoultech.ac.kr</u>

Fig. S1. Change of the absorption intensity (423 nm) of 1 (15 μ M) with 45 equiv of CN⁻ under the pseudo-first-order reaction condition. (b) The plot of time vs ln[1].

Fig. S2. Job plot for the binding of 1 with CN⁻. Absorbance at 423 nm was plotted as a function of the molar ratio of $[CN^-]/([1]+[CN^-])$. The total concentration of CN^- ions with receptor 1 was 1.0 x 10⁻⁵ M.

Fig. S3. Absorption intensity of 1 (15 μ M) at 423 nm after addition of increasing concentration of CN⁻. The red line is the non-linear fitting curve between 1 and CN⁻. Association constant (K) of 1 with CN⁻ was calculated by the non-linear least square curve fitting using Origin 8.0.

Fig. S4. Absorbance (at 423 nm) of 1 as a function of CN^{-} concentration in bis-tris buffer (10 mM bis-tris, pH = 7.0). [1] = 15 μ mol/L and [CN^{-}] = 0-30 μ mol/L.

Fig. S5. Change of the absorption intensity (423 nm) of 1 (15 μ M) with 19.4 μ M of CN-according to time.

Fig. S6. (a) Change of the absorption intensity (470 nm) of 1 (15 μ M) with 45 equiv of S²⁻ under the pseudo-first-order reaction condition. (b) The plot of time vs ln[1].

Fig. S7. Job plot for the binding of 1 with S²⁻. Absorbance at 470 nm was plotted as a function of the molar ratio of $[S^{2-}]/([1]+[S^{2-}])$. The total concentration of S²⁻ ions with receptor 1 was 1.0 x 10⁻⁵ M.

Fig. S8. Negative-ion electrospray ionization mass spectrum of 1 (15 μ M) upon addition of Na₂S·9H₂O (45 equiv).

Fig. S9. Benesi-Hildebrand plot ($\lambda_{abs} = 470 \text{ nm}$) of 1 (15 μ M), assuming a 1:1 stoichiometry for association between 1 and S²⁻.

Fig. S10. Absorbance (at 470 nm) of **1** as a function of S²⁻ concentration in bis-tris buffer (10 mM bis-tris, pH = 7.0). [**1**] = 15 μ mol/L and [S²⁻] = 18-30 μ mol/L.

(a)

Fig. S11. (a) Absorbance (at 470 nm) of **1** (15 μ M) with S²⁻ (45 equiv) at different pH (2-12). (b) The color of **1** (15 μ M) with S²⁻ (45 equiv) at different pH (2-12).

Fig. S12. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited state of 1.

Fig. S13. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1-CN⁻.

(a)

Fig. S14. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1-CN⁻.