Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

for

Chitosan bis(halophenylcarbamate)-(isobutyrylamide)s based chiral stationary phases for enantiomeric separation

Sheng Tang,^a Qin Bin, ^a Zi-Wei Feng,^a Wei Chen,^a Shao-Hua Huang^band Zheng-Wu

Bai*a

^aSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.

^bKey Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

*Corresponding author:

Zheng-Wu Bai (Z.W. Bai), E-mail Address: zwbai@wit.edu.cn

Tel. and fax: +86 27 87195680

Table of Contents

- 1. ¹H NMR spectrum of chitosan
- 2. ¹H NMR spectra of chitosan bis(halophenylcarbamate)-(isobutyrylamide)s
- 3. IR spectra of chitosan bis(halophenylcarbamate)-(isobutyrylamide)s
- 4. Structures of the tested chiral analytes
- 5. Numbers of the racemates recognized and baseline separated by CSPs1-6, CSPa and CSPb in each mobile phase
- 6. Elemental analysis results of P1-P6
- 7. Enantioseparation results of CSPa and CSPb
- 8. Eluent tolerance of CSP3 towards organic solvents

1. ¹H NMR spectrum of chitosan

¹H NMR spectra of chitosan bis(halophenylcarbamate)-(isobutyrylamide)s 2.

Fig. S2 ¹H NMR spectrum of chitosan bis(3,5-dichlorophenylcarbamate)-(isobutyrylamide) (P2) (600 MHz, DMSO- d_6 , 90 °C) 3

Fig. S3 ¹H NMR spectrum of chitosan bis(3,4-dichlorophenylcarbamate)-(isobutyrylamide) (P3) (600 MHz, DMSO-*d*₆, 90 °C)

Fig. S4 ¹H NMR spectrum of chitosan bis(4-chloro-3-trifluoromethylphenylcarbamate)-(isobutyrylamide) (P4) (600 MHz, DMSO-*d*₆, 90 °C)

Fig. S5 ¹H NMR spectrum of chitosan bis(3-chlorophenylcarbamate)-(isobutyrylamide) (P5) (600 MHz, DMSO-*d*₆, 90 °C)

Fig. S6 ¹H NMR spectrum of chitosan bis(4-trifluoromethoxyphenylcarbamate)-(isobutyrylamide) (P6) (600 MHz, DMSO-*d*₆, 90 °C)

3. IR spectra of chitosan bis(halophenylcarbamate)-(isobutyrylamide)s

Fig. S7 IR spectrum of chitosan bis(4-chlorophenylcarbamate)-(isobutyrylamide) (P1)

Fig. S8 IR spectrum of chitosan bis(3,5-dichlorophenylcarbamate)-(isobutyrylamide) (P2)

Fig. S9 IR spectrum of chitosan bis(3,4-dichlorophenylcarbamate)-(isobutyrylamide) (P3)

Fig. S10 IR spectrum of chitosan bis(4-chloro-3-trifluoromethylphenylcarbamate)-(isobutyrylamide) (P4)

Fig. S11 IR spectrum of chitosan bis(3-chlorophenylcarbamate)-(isobutyrylamide) (P5)

Fig. S12 IR spectrum of chitosan bis(4-trifluoromethoxyphenylcarbamate)-(isobutyrylamide) (P6)

4. Structures of the tested chiral analytes

Fig. S13 Structures of the tested chiral analytes.¹

5. Numbers of the racemates recognized and baseline separated by CSPs1-6, CSPa and CSPb in each mobile phase

Fig. S14 Numbers of the racemates recognized and baseline separated in the mobile phase of *n*-hexane/isopropanol (90/10).

Fig. S15 Numbers of the racemates recognized and baseline separated in the mobile phase of *n*-hexane/ethanol (90/10).

Fig. S16 Numbers of the racemates recognized and baseline separated in the mobile phase of *n*-hexane/ethanol/methanol (90/5/5). Since CSP2 was destroyed when it was tested in the eluent of *n*-hexane/ethanol/methaol methanol (90/5/5), the enantioseparation results of CSP2 were not available.

6. Elemental analysis results of P1-P6

Chiral selectors Calculated values Observed values С Н С Н Ν Ν 53.54% 4.68% 7.80% 53.39% 5.16% 7.96% P1 (C₂₄H₂₅Cl₂N₃O₇)_n P2 (C₂₄H₂₃Cl₄N₃O₇)_n 3.82% 6.92% 47.45% 4.36% 47.47% 7.22% 47.47% 3.82% 48.12% 4.63% 7.15% P3 (C24H23Cl4N3O7) n 6.92% 6.44% P4 (C₂₆H₂₃Cl₂F₆N₃O₇)_n 46.31% 3.44% 6.23% 46.56% 4.26% 53.54% 4.68% 7.80% 53.77% 5.19% 7.88% P5 (C₂₄H₂₅Cl₂N₃O₇)_n $P6 (C_{26}H_{25}F_6N_3O_9 \cdot 6H_2O)_n$ 41.88% 5.00% 5.64% 41.86% 5.40% 6.13%

Table S1 Elemental analysis results of P1-P6

Table S2 Enantioseparation results of CSPa and CSPb														
S.N.		CSPa			CSPb		C N		CSPa			MD		
	<i>k</i> ₁	α	Rs	<i>k</i> ₁	α	R _s	5. N.	<i>k</i> ₁	α	Rs	<i>k</i> ₁	α	Rs	M.P.
1	0.65(+)	1.51	1.68	1.03(+)	1.49	2.12	8	2.42(+)	1.57	2.45	5.71	1.00	0.00	A
	0.54(+)	1.87	3.07	0.70(+)	1.64	2.62		1.37(+)	2.98	6.28	1.75	1.00	0.00	В
	0.66(+)	1.79	3.79	0.72(+)	1.64	2.63		1.72(+)	2.87	6.98	1.36	1.00	0.00	С
2	1.24(+)	1.20	1.37	1.53(-)	1.30	1.80	9	5.16(R)	1.70	3.15	4.52(R)	1.18	1.01	А
	1.19(+)	1.46	2.94	1.15(-)	1.21	1.14		1.22(R)	1.46	2.04	1.15(R)	1.12	0.53	В
	1.43(+)	1.79	5.00	1.09(-)	1.21	1.19		1.58(R)	1.27	1.45	1.10 (R)	1.16	0.54	С
3	1.19	1.00	0.00	2.09	1.00	0.00	10	3.99	1.00	0.00	2.90(+)	1.40	2.17	А
	0.68(+)	1.06	0.28	1.34	1.00	0.00		2.60(+)	1.08	0.48	2.06(+)	1.33	1.93	В
	0.98	1.00	0.00	1.24	1.00	0.00		2.76(+)	1.10	0.85	1.85(+)	1.34	1.96	С
4	2.95(-)	1.06	0.48	3.74(+)	1.10	0.57	11	10.01(R)	1.45	1.75	11.74(S)	1.20	0.96	А
	1.71	1.00	0.00	1.90	1.00	0.00		1.97(R)	1.28	1.33	2.25(S)	1.12	0.38	В
	2.29	1.00	0.00	1.60	1.00	0.00		2.36(R)	1.21	1.47	2.50 (S)	1.10	0.35	С
5	0.63	1.00	0.00	0.95(+)	1.12	0.42	12	Retention	time >12	0 min	39.05	1.00	0.00	А
	0.43	1.00	0.00	0.65(+)	1.13	0.22		Retention	time >12	0 min	24.36	1.00	0.00	В
	0.69	1.00	0.00	0.57(+)	1.13	0.38		Retention	time >12	0 min	12.20	1.00	0.00	С
6	5.71(R)	1.27	1.46	9.85(S)	1.09	0.96	13	Retention	time >12	0 min	38.78	1.00	0.00	А
	3.23(R)	1.11	0.77	4.89	1.00	0.00		Retention	time >12	0 min	23.56	1.00	0.00	В
	4.10	1.00	0.00	3.82(R)	1.10	0.45		Retention	time >12	0 min	12.14	1.00	0.00	С
7	6.11(R)	2.09	3.00	7.61(R)	1.25	0.39	14	1.65	1.00	0.00	2.49	1.00	0.00	A

7. Enantioseparation results of CSPa and CSPb

1.32(R)	1.41	1.60	1.42(R)	1.28	1.19	1.46	1.00	0.00	1.37	1.00	0.00	В
1.57(R)	1.21	1.37	1.05(R)	1.20	0.89	1.95	1.00	0.00	1.23	1.00	0.00	С

Continued Table S2

Table S1 to be continued

S.N.	(CSPa			CSPb			С	SPa		С	MD		
	<i>k</i> ₁	α	Rs	k_1	α	R _s	S. IN.	<i>k</i> ₁	α	R _s	<i>k</i> ₁	α	Rs	M.P.
15	1.14(S)	1.22	0.84	1.62(R)	1.34	1.60	18	4.49(S)	1.06	0.25	2.97(S)	1.06	0.29	A
	0.58(S)	1.12	0.32	0.83(R)	1.34	1.55		2.72(R)	1.35	0.80	1.73	1.00	0.00	В
	0.97	1.00	0.00	0.73(R)	1.21	0.47		1.96(R)	1.39	1.78	1.80	1.00	0.00	С
16	25.10	1.00	0.00	32.69(R)	1.30	1.27	19	5.62(2R,3S)	1.16	0.78	19.21	1.00	0.00	А
	7.73(R)	1.63	2.20	11.45(R)	1.18	0.99		4.65(2R,3S)	1.18	1.11	9.47(2R,3S)	1.29	1.81	В
	9.07(R)	1.50	2.98	7.77(R)	1.13	0.68		3.81(2R,3S)	1.17	1.16	6.53(2R,3S)	1.27	1.82	С
17	Retention	time >12	20 min	17.56(R)	1.28	0.43								А
	10.37(R)	1.61	2.57	6.37(R)	1.25	0.99								В
	9.62 (R	1.79	3.63	3.94(R)	1.15	0.54								С

S.N.: serials number of the analytes; M.P.: mobile phase: A: *n*-hexane/isopropanol (90/10); B: *n*-hexane/ethanol (90/10); C: *n*-hexane/ethanol/methanol (90/5/5). "+", "-", "R", "S" and "(2R,3S)" refer to the optical rotation or configuration of the first-eluted enantiomer. Flow rate: 1.0 ml min⁻¹. Dectetion temperature: 25 °C. Enantioseparation results of CSPa and CSPb were cited from our most recently reported work.¹

8. Eluent tolerance of CSP3 towards organic solvents

		a	5 Compu		h	on donney	01 001 5 00			ing musiled	d d	045 01541					
S.N.		a						C			u			e			
	<i>k</i> ₁	α	Rs	<i>k</i> ₁	α	Rs	<i>k</i> ₁	α	Rs	<i>k</i> ₁	α	R _s	<i>k</i> ₁	α	Rs		
1	0.39	1.43	2.51	0.43	1.54	3.24	0.41	1.57	3.37	0.42	1.56	3.49	0.38	1.52	2.75		
2	1.44	1.29	3.14	1.87	1.32	4.36	1.79	1.29	3.13	1.88	1.31	4.66	1.58	1.29	2.99		
3	0.59	1.00	0.00	0.78	1.00	0.00	0.78	1.00	0.00	0.76	1.00	0.00	0.62	1.00	0.00		
4	4.72	1.36	5.46	7.01	1.42	5.88	5.91	1.44	6.26	6.82	1.43	6.28	4.69	1.41	5.57		
5	0.47	1.00	0.00	0.60	1.00	0.00	0.53	1.00	0.00	0.58	1.00	0.00	0.46	1.00	0.00		
6	8.90	1.22	3.20	15.25	15.17	1.17	3.08	15.42	1.20	3.16	9.44	1.22	2.90				
7	1.24	1.16	1.56	1.87	1.61	1.19	2.04	1.88	1.20	2.11	1.30	1.18	1.56				
8	1.64	1.00	0.00	2.74	1.00	0.00	2.61	1.00	0.00	2.54	1.00	0.00	1.68	1.00	0.00		
9	1.28	1.16	1.61	2.00	1.18	1.96	1.79	1.18	2.28	2.00	1.18	2.31	1.34	1.17	1.71		
10	2.23	1.05	0.39	3.11	1.08	0.22	2.85	1.00	0.00	3.06	1.06	0.31	2.37	1.03	0.10		
11	1.84	1.18	1.66	3.04	1.19	1.66	2.61	1.19	1.62	2.91	1.19	1.71	1.84	1.25	1.14		
12	31.65	1.11	1.56	Retentio	on time > 12	20 min	37.84	1.05	0.44	43.29	1.04	0.43	28.80	1.17	1.91		
13	25.47	1.12	1.52	Retentio	on time > 12	20 min	45.20	1.00	0.00	33.64	1.03	0.20	23.57	1.16	1.37		
14	2.90	1.00	0.00	4.44	1.00	0.00	4.54	1.00	0.00	4.46	1.00	0.00	3.35	1.00	0.00		
15	1.36	1.00	0.00	2.11	1.00	0.00	2.13	1.05	0.33	1.98	1.07	0.68	1.43	1.00	0.00		
16	7.56	1.00	0.00	12.89	1.00	0.00	10.31	1.00	0.00	12.73	1.00	0.00	8.18	1.00	0.00		

Table S3 Comparison in enantioseparation ability of CSP3 before and after being flushed by various organic solvents

17	13.25	1.07	0.51	Retentio	Retention time > 120 min			1.04	0.31	23.26	1.04	0.18	14.30	1.05	0.18
18	3.62	1.16	1.69	6.44	1.19	1.98	5.41	1.18	2.05	6.67	1.18	2.11	4.28	1.17	1.48
19	4.03	1.81	7.79	6.10	1.91	6.95	5.31	1.98	8.26	6.10	1.97	8.14	3.95	1.86	6.74

S.N.: serials number of the analytes; (a) initial enantioseparation results of CSP3; (b) after CSP3 worked for 100 h during the initial enantioseparation and then was placed aside for two months; (c) after CSP3 was flushed by pure ethyl acetate; (d) after CSP3 was flushed by pure chloroform; (e) after CSP3 was flushed by *n*-hexane/THF (70/30); mobile phase for enantioseparations: *n*-hexane/ethanol (90/10); flow rate: 1.0 ml min⁻¹; dectetion temperature: 25 °C.

References

1. S. Tang, Q. Bin, W. Chen, Z.W. Bai and S.H. Huang, J. Chromatogr. A, 2016, 1440, 112-122.