Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New J. Chem.

Electronic Supplementary Information

Ligand-directed assembly of trinuclear and one-dimensional

heterotrimetallic Cu^{II}Ln^{III}Fe^{III} complexes. Unusual antiferromagnetic

Cu^{II}Fe^{III} coupling via cyano bridges

Mei-Jiao Liu,^a Kong-Qiu Hu,^a Cai-Ming Liu,^b Ai-Li Cui^a and Hui-Zhong Kou^{a,*} ^a Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. ^b Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Complex	1	2	3	
Ln1–O1	2.330(3)	2.373(3)	Dy1-O1	2.311(3)
Ln1–O2	2.591(3)	2.552(3)	Dy1–O2	2.456(3)
Ln1–O3	2.335(3)	2.317(3)	Dy1–O3	2.453(3)
Ln1–O4	2.576(3)	2.587(3)	Dy1–O4	2.290(2)
Ln1–O2W	2.387(3)	2.353(3)	Dy1–O1W	2.355(3)
Ln1–O3W	2.371(3)	2.294(3)	Dy1–O2W	2.352(3)
Ln1–O4W	2.432(4)	2.411(4)	Dy1–O6W	2.398(3)
Ln1–N8	2.473(4)	2.461(4)	Dy1–N8	2.412(3)
Ln1–O1W'	2.753(10)	2.733(13)		
Cu1–O1	1.940(3)	1.917(3)	Cu1–O1	1.970(2)
Cu1–O3	1.952(3)	1.998(3)	Cu1–O4	1.976(3)
Cu1–N1	1.952(4)	1.940(5)	Cu1–N6	1.965(3)
Cu1–N6	1.962(4)	2.006(4)	Cu1–N7	1.982(4)
Cu1–O1W	2.683(16)	2.605(13)	Cu1–O1W	2.447(3)
Cu1–O1W'	2.714(7)	2.657(9)		
Fe1–C1	1.937(4)	1.935(4)	Fe1–C7	1.923(4)
Fe1–C9	1.940(5)	1.948(5)	Fe1–C14	1.939(4)
Fe1–C14	1.947(4)	1.953(4)	Fe1–C15	1.936(4)
Fe1–C16	1.941(4)	1.950(4)	Fe1–C20	1.940(4)
Fe1-C19	1.932(5)	1.929(5)	Fe1–C21	1.951(4)
Fe1–C23	1.937(5)	1.946(5)	Fe1–C22	1.948(4)
Fe1–C≡N	174.7(4) - 177.9(3)	174.9(4) - 177.9(4)	Fe1–C≡N	171.1(5) - 179.0(4)
Ln1–N8–C1	168.9(3)	169.6(3)	Dy1-N8-C7	155.3(3)
Cu1–O1–Ln1	106.10(12)	106.90(12)	Cu1–O1–Dy1	106.42(11)
Cu1–O3–Ln1	105.53(12)	106.27(12)	Cu1–O4–Dy1	106.99(11)

Table S1 Selected bond distances (Å) and bond angles (°) for complexes $1\text{-}3^a$

^a In complexes **1** and **2**, the atoms O1W and O1W' are crystallographically disordered, and their occupancies are refined.

Complex	4	5	6	7
Ln1-O1	2.386(8)	2.379(5)	2.358(5)	2.350(3)
Ln1-O5	2.343(8)	2.338(4)	2.319(4)	2.307(3)
Ln1-O2	2.376(7)	2.364(5)	2.335(4)	2.325(3)
Ln1-O3	2.637(9)	2.624(5)	2.617(5)	2.621(3)
Ln1-O4	2.549(8)	2.530(5)	2.526(5)	2.502(3)
Ln1-O7	2.573(8)	2.551(5)	2.551(5)	2.530(3)
Ln1-O6	2.597(8)	2.590(5)	2.575(5)	2.588(3)
Ln1-OW1	2.354(8)	2.360(6)	2.327(5)	2.287(3)
Ln1-O8	2.366(8)	2.368(5)	2.348(5)	2.345(3)
Cu2-O5	2.011(8)	1.994(5)	1.999(5)	2.000(3)
Cu2-N1	2.004(10)	1.983(7)	1.988(6)	1.992(3)
Cu2-N2	1.988(10)	1.977(6)	1.969(6)	1.986(3)
Cu2-O8	1.964(8)	1.962(4)	1.964(4)	1.967(3)
Cu2-N10#1	2.167(12)	2.163(8)	2.180(7)	2.193(4)
Cu1-O1	1.992(7)	1.977(5)	1.978(5)	1.978(3)
Cu1-O2	2.001(8)	1.993(5)	1.997(5)	1.997(3)
Cu1-N3	1.981(10)	1.990(6)	1.976(6)	1.988(3)
Cu1-N8	2.158(10)	2.201(7)	2.178(6)	2.182(3)
Cu1-N9	1.983(10)	1.993(6)	1.976(6)	1.987(3)
Fe-C(cyano)	1.919(12) -	1.904(11) -	1.914(11) -	1.921(4) -
	1.959(14)	1.939(10)	1.937(9)	1.947(4)
Cu–N≡C	150.4(10),	151.3(7),	152.8(6),	150.0(3),
	149.2(11)	149.2(7)	149.7(7)	145.9(3)
Fe–C≡N	172.7(16) -	175.9(11) -	175.8(8) -	175.5(4) -
	179.1(13)	178.8(9)	179.0(8)	178.9(5)
Cu1-O1-Ln1	106.9(3)	107.5(2)	107.2(2)	107.22(11)
Cu1-O2-Ln1	107.0(3)	107.5(2)	107.46(19)	107.54(11)
Cu2–O5–Ln1	107.0(4)	107.8(2)	107.4(2)	107.51(11)
Cu2–O8–Ln1	107.8(3)	107.8(2)	107.6(2)	107.20(12)

Table S2 Selected bond distances (Å) and bond angles (°) for complexes 4-7.

	$^{2S+1}L_{J}\left(Ln^{III}\right)$	Theoretical $\chi_m T$	Experimental $\chi_m T$	Weiss	constant	
		(cm ³ K mol ⁻¹)	(cm ³ K mol ⁻¹)	(K)		
CuFeGd (1)	${}^{8}S_{7/2}$	8.64	9.19	1.47		
CuFeTb (2)	$^{7}\mathrm{F}_{6}$	12.58	12.81	1.30		
CuFeDy (3)	⁶ H _{15/2}	14.93	16.09	14.72		
$Cu_2FeGd(4)$	${}^{8}S_{7/2}$	9.01	9.96	5.55		
Cu_2FeTb (5)	$^{7}\mathrm{F}_{6}$	12.95	13.97	38.96		
Cu_2FeDy (6)	⁶ H _{15/2}	15.30	16.97	53.20		

Table S3 Magnetic data for complexes 1-6.

Fig. S1. Crystal structure of complex **2**. O1W and O1W' are disordered. Hydrogen and solvent have been omitted for clarity.

Fig. S2. The relative positions of lanthanide ion deviate from O1O2O3O4 plane in complexes **1** (left) and **3** (right).

Fig. S3. Crystal structure of complex **4** (above) and the 1D zig-zag chain parallel with b axis (below). Hydrogen and solvent have been omitted for clarity.

Fig. S4. Crystal structure of complex **6** (above) and the 1D zig-zag chain (below). Hydrogen and solvent have been omitted for clarity.

Fig. S5. Temperature dependence of $\chi_m T$ for complex 7. The solid lines indicate the best fitting results. Inset: Field dependence of magnetization for complex 7 at 2.0 K.

complexes	$2J_{CuGd}/cm^{-1}$	Gd-O ₂ -Cu/°	Cu-O-Gd/°	Gd-Cu/Å	Ref
Complex 1	4.78	19.74	105.82	3.421	/
Complex 4	5.89	18.06	107.18	3.515	/
${[Cu(L^{\alpha-Me})]_2Gd(H_2O)(NO_3)_2}NO_3$	3.62	38.0	97.1,97.9	3.212	20a
[Cu(H ₂ L)(CH ₃ OH)] ₂ Gd(DMF)Fe(CN) ₆	15.94	3.61	107.04	3.450	20b
[Cu(H ₂ L)(CH ₃ OH)] ₂ Gd(DMF)Fe(CN) ₆	9.08	10.35	108.06	3.442	20b
Gd(hfa) ₃ Cu(salen)	0.4	33.78	94.38	3.215	24d
Cu(salabza)Gd(hfac) ₃	0.8	34.28	95.8	3.248	24e
Cu(salen)Gd(pta) ₃	1.21	23.72	97.5	3.288	24f
Cu(acacen)Gd(hfa) ₃	1.25	25.53	97.8	3.301	24f
Gd(hfa) ₃ Cu(salen)(Meim)	1.42	27.72	96.7	3.252	24d
Cu(acacen)Gd(pta) ₃	1.47	29.81	96.3	3.274	24f
Cu(prpen)Gd(hfac) ₃	1.91	30.78	97.1	3.252	24g
CuGd(hmp) ₂ (NO ₃) ₃ (H ₂ O) ₂	3.36	15.32	102.4	3.246	24h
[CuGd(ems)(NO ₃)·3H ₂ O]Cu(ems)	3.76	17.77	99.5	3.306	24i
$L^{a}Cu(C_{3}H_{6}O)Gd(NO_{3})_{3}$	4.8	13.52	107.8	3.523	24j
L ^b CuGd(NO ₃) ₃	4.98	14.12	103.6	3.443	24k
L°Cu(H ₂ O)Gd(NCS) ₃ ·Me ₂ CO	5.5	15.44	106.5	3.454	241
L ^d CuGd(NO ₃) ₃ ·Me ₂ CO	5.6	9.60	109.4	3.425	24m
L ^a Cu(MeOH)Gd(NO ₃) ₃	6.8	10.00	107.8	3.484	24j
LeCuGd(NO ₃) ₃ ·Me ₂ CO	7.0	10.15	106.7	3.428	24n
L ^f CuGd(NO ₃) ₃ ·Me ₂ CO	7.3	12.7	107.1	3.475	20c
$L^1CuGd(NO_3)_3 \cdot Me_2CO$	7.4	10.18	107.6	3.475	240
L ^g CuGd(NO ₃) ₃	7.6	9.22	108.0	3.499	24p
L ^h CuGd(NO ₃) ₃	8.08	3.36	105.2	3.400	24q
L ⁱ CuGd(NO ₃) ₃ ·Me ₂ CO	8.63	11.11	107.0	3.454	24r
$L^{i}CuGd(NO_{3})(N(CN)_{2})_{2} \cdot Me_{2}CO$	8.50	3.27	107.67	3.481	24r
$[L^2CuCl_2Gd(H_2O)_4]Cl \cdot 2H_2O$	10.1	1.38	108.8	3.512	24s
L ^j CuGd(NO ₃) ₃	10.8	7.1	106.6	3.449	24t
$L^{k}CuGd(NO_{3})_{3}$	12.6	2.10	105.0	3.401	24t
$[L^{m_{2}}Cu_{2}Gd_{2}(NO_{3})_{6}(H_{2}O)_{2}]$	4.5	20.44	103.0	3.395	24c
$[{CuL^1}Gd(H_2O)_3{Co(CN)_6}]$	7.24	10.19	106.52	3.508	6b
$[(bipy)W(CN)_6Cu(L^1)Gd(NO_3)_2]_3$	8.67	12.89	107.06	3.466	12c
[{CuL}2Gd(TCNQ)2]·TCNQ	7.7	17.13	107.24	3.477	24u
$[GdCu_3L^n(hfac)_3]^-$	0.86	39.08	96.09	3.393	24v
$L^1CuGd(hfac)_2(ac)$	2.6	24.47	104.49	3.437	24a
$Gd_6Cu_3(OH)(pdm)_3(O_2C^tBu)_9(CO_3)_4$	0.8	24.34	102.78	3.491	24x
[CuLn(L ^p)(NO ₃) ₂ (H ₂ O) ₃ MeOH]NO ₃	7.89	2.52	107.94	3.539	24y
[Cu(valaepy) ₂ Gd(O ₂ NO) ₃ (H ₂ O)]	4.94	2.52	108.67	3.506	24b
GdCuLqCl ₃ (CH ₃ OH) ₂	11.2	15.39	/	3.409	24w
$[Gd_2Cu_4L^r_4Cl_2(OH)](PF_6)_3$	9.8	23.36	106.30	3.479	24w

Table S4 Structural and magnetic data for complexes with the CuO₂Gd bridging mode

[6b] R. Gheorghe, M. Andruh, J.- P. Costes and B. Donnadieu, Chem. Comm., 2003, 2778.

[20a] S. Ghosh, C. J. Gómez García, J. M. Clemente-Juan and A. Ghosh, *Magnetochemistry*, 2015, **2**, 2

[20b] K.-Q. Hu, S.-Q. Wu, A.-L. Cui and H.-Z. Kou, Transition Met. Chem., 2014, 39, 713.

[12c] M. G. Alexandru, D. Visinescu, A. M. Madalan, F. Lloret, M. Julve and M. Andruh, *Inorg. Chem.*, 2012, **51**, 4906.

[24a] M. Towatari, K. Nishi, T. Fujinami, N. Matsumoto, Y. Sunatsuki, M. Kojima, N. Mochida, T. Ishida, N. Re and J. Mrozihski, *Inorg. Chem.*, 2013, **52**, 6160.

[24b] M. Sarwar, A. M. Madanlan, C. Tiseanu, G. Novitchi, C. Maxim, G. Marinescu, D. Luneau and M. Andruh, *New. J. Chem.*, 2013, **37**, 2280.

[24c] G. Novitchi, J.-P. Costes, J.-P. Tuchagues, L. Vendier and W. Wernsdorfer, *New. J. Chem.*, 2008, **32**, 197.

[24d] I. Ramade, O. Kahn, Y. Jeannin and F. Robert, Inorg. Chem., 1997, 36, 930.

[24e] M. Sasaki, H. Horiuchi, M. Kumagai, M. Sakamoto, H. Sakiyama, Y. Nishida, Y. Sadaoka, M. Ohba and H. Okawa, *Chem. Lett.*, 1998, 911

[24f] M. Ryazanov, V. Nikiforov, F. Lloret, M. Julve, N. Kuzmina and A. Gleizes, *Inorg. Chem.*, 2002, **41**, 1816.

[24g] C. Brewer, G. Brewer, W. R. Scheidt, M. Shang and E. E. Carpenter, *Inorg. Chem. Acta*, 2001, **313**, 65.

[24h] F. He, M.-L. Tong and X.-M. Chen, Inorg. Chem., 2005, 44, 8285.

[24i] A. M. Atria, Y. Moreno, E. Spodine, M. T. Garland and R. Baggio, *Inorg. Chem. Acta*, 2002, **335**, 1.

[24j] J.-P. Costes, F. Dahan, A. Dupuis and J.-P. Laurent, Inorg. Chem., 1997, 36, 3429.

[24k] J.-P. Costes, F. Dahan, G.Novitchi, V. Arion, S. Shova and J. Lipkowski, *Eur. J. Inorg. Chem.*, 2004, 1530.

[241] G. Novitchi, J.-P. Costes and B. Donnadieu, Eur. J. Inorg. Chem., 2004, 1808.

[24m] H. Kara, Y. Elerman and K. Prout, Z. Naturforsch., B: Chem. Sci., 2000, 55, 1131.

[24n] J.-P. Costes, F. Dahan, A. Dupuis and J.-P. Laurent, *Inorg. Chem.*, 1996, **35**, 2400.

[20c] C. T. Zeyrek, A. Elmali and Y. Elerman, J. Mol. Struct., 2005, 740, 47.

[240] A. Elmali and Y. Elerman, Z. Naturforsch., B: Chem. Sci., 2004, 59, 535.

[24p] S. Akine, T. Matsumoto, T. Taniguchi and T. Nabeshima, Inorg. Chem., 2005, 44, 3270.

[24q] S. Mohanta, H.-H. Lin, C.-J. Lee and H.-H. Wei, Inorg. Chem. Commun., 2002, 5, 585.

[24r] J.-P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu and J.-P. Tuchagues, *Inorg. Chem.*, 2004, 43, 7792.

[24s] J.-P. Costes, F. Dahan and A. Dupuis, Inorg. Chem., 2000, 39, 165.

[24t] R. Koner, G.-H. Lee, Y. Wang, H.-H. Wei and S. Mohanta, *Eur. J. Inorg. Chem.*, 2005, 1500.

[24u] A. M. Madalan, H. W. Roesky, M. Andruh, M. Noltemeyer and N. Stanica, *Chem. Commun.*, 2002, 1638.

[24v] C. Aronica, G. Chastanet, G. Pilet, B. L. Guennic, V. Robert, W. Wernsdorfer and D. Luneau, *Inorg. Chem.*, 2007, **46**, 6108.

[24w] L.-L. Xu, Q. Zhang, G.-F. Hou, P. Chen, G.-M. Li, D. M. Pajerowski and C. L. Dennis, *Polyhedron*, 2013, **52**, 91.

[24x] T. N. Hooper, R. Inglis, M. A. Palacios, G. S. Nichol, M. B. Pitak, S. J. Coles, G. Lorusso, M. Evangelisti and E. K. Brechin, *Chem. Commun.*, 2014, **50**, 3498.

[24y] B. Cristovao, J. Klak, B. Miroslaw and L. Mazur, Inorg. Chem. Acta, 2011, 378, 288.

Fig. S6. Magneto-structural correlationship for bis-phenoxo-bridged Cu(II)-Gd(III) complexes. The solid line represents the exponential fit to the experimental data. The pentagrams correspond to complexes 1 and 4.

Fig. S7. Temperature dependence of the out-of-phase $(\chi"_m)$ parameters for complexes 2 (left) and 3 (right) at 997 Hz.

Fig. S8. Temperature dependence of the out-of-phase $(\chi"_m)$ parameters for complexes 5 (left) and 6 (right) at 997 Hz.

Fig. S9. Temperature dependence of the out-of-phase (χ'_m) parameters for complex 6.

Fig. S10. The $ln(\tau)$ vs. *T*⁻¹ plots based on the Arrhenius relationship for complex **6**.