Electronic Supporting Information

For

Substrate Induced Morphology in a Hydrosulfide-Molybdenum Complex

Joyee Mitra^{a, b*} and Sabyasachi Sarkar^{c*}

^a Inorganic Materials & Catalysis Division, CSIR-CSMCRI Bhavnagar, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India. Email: joyeemitra@csmcri.org

^b Academy of Scientific and Innovative Research, CSIR-CSMCRI Bhavnagar, Gujarat, India.

^c Center for Healthcare Science and Technology, Indian Institute of Engineering Science and

Technology Shibpur, Howrah 711 103, West Bengal, India.

E-mail: abya@iitk.in

- 1. FESEM image of 1 on glass surface
- 2. TEM image of cubic motif
- 3. FESEM of 1 on brass in presence of DCM
- 4. TEM images of **1** on silicon wafer
- 5. FTIR spectra as pressed KBr discs
- 6. Powder XRD patterns
- 7. Table S1: Thermal conductivity of substrates used

1. 1 on glass surface

Figure S1: FESEM image of 1 depicting cuboidal motifs on glass surface

2. TEM image of cuboid

Figure S2: TEM image and SAED pattern of cuboidal motifs of 1

3. 1 on brass in presence of DCM

Figure S3: Rapid evaporation of low boiling dichloromethane solvent resulting in extensive lateral growth of 1 on brass.

4. TEM image of spheroids

Figure S4: TEM image and SAED pattern of spheroids of 1 on silicon wafer

Figure S5: Powder XRD patterns of 1 and its self-assembled forms on brass (1') and copper

substrates are depicted.

6. FTIR spectra as pressed KBr discs

Figure S6: FTIR spectra of 1 before and after deposition respective substrates are depicted.

7. Table S1: Thermal conductivity of the substrates

Substrate	Thermal Conductivity, k (W/m K)
Brass	109.0
Copper	385.0
Zinc	116.0
Aluminium	205.0
Glass	149.0
Silicon	0.8