Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

Luminescent Cu^I thiocyanate complexes based on tris(2-pyridyl)phosphine and its oxide: from mono-, di- and trinuclear species to coordination polymer

Alexander V. Artem'ev,*^a Evgeniya P. Doronina,^a Mariana I. Rakhmanova,^b Anastasiya O. Sutyrina,^a Irina Yu. Bagryanskaya,^{c,d} Peter M. Tolstoy,^e Artem L. Gushchin,^b Anton S. Mazur,^e Nina K. Gusarova,^a Boris A. Trofimov^a

- ^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
- ^b Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- ^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- ^d Novosibirsk State University, (National Research University), Department of Natural Sciences, 2, Pirogova Str., Novosibirsk 630090, Russia
- ^e St. Petersburg State University, Center for Magnetic Resonance, Universitetskij pr. 26, 198504 St.Petersburg, Russia

*Author for correspondence: <u>chemisufarm@yandex.ru</u> (Alexander V. Artem'ev)

Figure S1. PXRD patterns (298 K) of samples 5 obtained by methods 1, 2 and 3.

Figure S2. Experimental and simulated PXRD patterns for complexes 1, 2 and 4. Simulated patterns calculated from the X-ray structures of 1, 2 and 4 are represented by red lines.

Compound	$1 \cdot CH_2Cl_2$	2	3	4·CHCl ₃	6 ·CHCl₃
Empirical formula	$C_{16}H_{12}CuN_4OPS\cdot CH_2Cl_2$	$C_{32}H_{24}Cu_2N_8O_2P_2S_2$	$\begin{array}{c} C_{32}H_{24}Cu_2N_8O_2P_2S_2\cdot\\ 2[C_{16}H_{12}CuN_4OPS] \end{array}$	$C_{34}H_{25}Cl_3Cu_3N_9O_2P_2S_3\\$	$C_{17}H_{12}CuN_5OPS_2{\cdot}CHCl_3$
Formula mass	487.79	805.73	1611.46	1046.72	580.31
[g/mol]					
Space group	C2/c	P-1	P2/c	P-1	$P2_1/c$
a [Å]	20.506(3)	8.3784(8)	25.1513(11)	11.8672(7)	11.9247(6)
<i>b</i> [Å]	12.2936(17)	9.0242(8)	8.253(4)	12.4871(7)	10.7519(4)
<i>c</i> [Å]	16.937(2)	13.1937(11)	33.3853(15)	18.2320(11)	18.7122(7)
α [°]	90	71.147(3)	90	84.626(2)	90
β[°]	105.973(4)	78.454(3)	109.3330(10)	89.461(2)	97.860(2)
γ[°]	90	65.128(3)	90	62.746(2)	90
V [Å ³]	4104.9(10)	854.08(13)	6539.2(5)	2389.5(2)	2376.61(17)
Ζ	8	1	4	2	4
$D_{\text{calcd.}} [g \cdot \text{cm}^{-3}]$	1.579	1.567	1.637	1.455	1.622
μ [mm ⁻¹]	1.519	1.504	1.572	1.727	1.520
Temperature [K]	296(2)	296(2)	296(2)	200(2)	296(2)
Reflections	58293	42492	127884	108400	44040
collected					
Independent	4473 $[R_{int} = 0.0628]$	$3717 [R_{int} = 0.0565]$	14274 $[R_{int} = 0.0665]$	$11016 [R_{int} = 0.0360]$	5451 $[R_{int} = 0.0393]$
reflections					
$R_1, wR_2 [I > 2\sigma(I)]$	0.0408, 0.1003	0.0854, 0.2799	0.0375, 0.0751	0.0389, 0.0933	0.0505, 0.1383
R_1 , wR_2 (all data)	0.0640, 0.1143	0.0996, 0.2828	0.0548, 0.0806	0.0515, 0.1053	0.0583, 0.1474
Goodness of fit	1.023	1.122	1.061	1.032	1.058

 Table S1. X-Ray crystallographic data for complexes 1-4 and 6.

Figure S3. The structure of the dinuclear complexes from co-crystal 3 overlaid on the structure of the individual complex 2.

Figure S4. Overlaid structures of the two independent molecules [Cu(Py₃P=O)(NCS)] within co-crystal 3.

Figure S5. FT-IR spectrum of complex 1 (KBr).

Figure S6. FT-IR spectrum of complex 2 (KBr).

Figure S7. FT-IR spectrum of complex 3 (KBr).

Figure S8. FT-IR spectrum of complex 4 (KBr).

Figure S9. FT-IR spectrum of complex 5 (KBr).

Figure S10. Typical FT-IR spectrum of complex 1 or 2 recorded for CHCl₃ solution.

Figure S11. FT-IR spectrum of complex 6 (KBr).

Figure S12. ¹H NMR spectrum of complex 1 (CDCl₃).

Figure S13. ¹³C NMR spectrum of complex 1 (CDCl₃).

Figure S14. ³¹P NMR spectrum of complex 1 (CDCl₃).

Figure S17. ³¹P NMR spectrum of complex 2 (CDCl₃).

Figure S18. ¹H NMR spectrum of complex 3 (CDCl₃).

Figure S19. ³¹P NMR spectrum of complex 3 (CDCl₃).

Figure S20. ¹H NMR spectrum of complex 4 (CDCl₃).

Figure S21. ³¹P NMR spectrum of complex 4 (CDCl₃).

Figure S22. UV-Vis spectrum of complex 6 recorded for CHCl₃ solution.

Figure S23. The excitation and emission spectra of complex $1 \cdot CH_2Cl_2$.

The complex $[Cu(N,N',N''-Py_3P=O)(NCS)] \cdot CH_2Cl_2$ (1 · CH_2Cl_2) manifest red luminescence in the solid state at room temperature. The excitation maximum for this compound is about 450 nm. The powder of compounds exhibit photoluminescence with a broad emission with two maxima at *ca*. 610 nm ($\lambda_{exc} = 350$ nm). A peak at 700 nm is second harmonic. Quantum yield, $\phi_{PL} = 2\%$.

Figure S24. The excitation and emission spectra of complex 2.

The complex $[(N,N'-Py_3P=O)Cu (N,N'-Py_3P=O)]$ (2) manifest orange-red luminescence in the solid state at room temperature. The excitation maximum for compound is about 450 nm. Taking into account these data, were used as the excitation wavelengths 450 nm for recording of emission spectra. The powder of the complex exhibit orange-red photoluminescence with a broad emission with maxima at *ca*. 600 nm. Quantum yield, $\phi_{PL} = 0.5\%$.

Figure S25. The excitation and emission spectra of complex 4.2CHCl₃.

The compounds $\{Cu(NCS)[(SCNCu(N,N',N''-Py_3P=O)]_2\} \cdot 2CHCl_3$ (4·2CHCl_3) manifest orange luminescence in the solid state at room temperature. The excitation maximum for compounds is about 350 and 450 nm. Taking into account these data, were used as the excitation wavelengths 350 and 450 nm for recording of emission spectra. The powder of compounds exhibit orange photoluminescence with a broad emission with maxima at *ca*. 590 nm. Quantum yield = 3%.

Figure S26. The excitation and emission spectra of complex 5.

The compounds $[Cu(Py_3P)NCS]_n$ (5) manifest green luminescence in the solid state at room temperature. The excitation maximum for compounds is about 350 nm. Taking into account these data, were used as the

excitation wavelengths 350 nm for recording of emission spectra. The powder of compounds exhibit green photoluminescence with a broad emission with maxima at *ca*. 510 nm. Quantum yield = 10%.

Table S2. B3LYP/def2-TZVPP selected structural parameters (bond lengths are given in Å and bond angles in degrees) of the isomers 1 and 1^{\prime} and the relative stabilities^{*a*} in gas phase (isolated molecule) and in CHCl₃ solution (in parentheses).

Isomer 1				
	Cu–N ¹	1.898 (1.919)		
	$Cu-N^{2,3,4}$ (mean)	2.143 (2.140)		
0	N ¹ –C	1.177 (1.173)		
P. C	S-C	1.620 (1.633)		
$\begin{bmatrix} 1 & N^{4} \end{bmatrix}$	C–N ¹ –Cu	179.9 (179.9)		
Cu	N ¹ -C-S	180.0 (180.0)		
N ¹ CS	$ au_4^{\ b}$	0.81 (0.81)		
	ΔE	0.00 (0.00)		
	ΔG	0.00 (0.00)		
	Cu–S	2.273 (2.287)		
	$Cu-N^{2,3,4}$ (mean)	2.146 (2.137)		
0	S-C	1.677 (1.671)		
P. C	N ¹ -C	1.165 (1.166)		
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	C–S–Cu	96.1 (101.2)		
	N ¹ -C-S	179.2 (179.4)		
SCN ¹	$ au_4^{b}$	0.80 (0.81)		
	ΔE	1.74 (3.28)		
	ΔG	3.00 (5.14)		

^{*a*} The difference in internal energies of the isomers 1, 1^{*i*} corrected for the zero-point vibrational energies (ΔE , kcal mol⁻¹) and in Gibbs free energies (ΔG , kcal·mol⁻¹) calculated under the normal conditions (298.15 K, 1 atm). ^{*b*} τ_4 is the four-coordinate geometry index of coordination Cu center.

Table S3. Selected structural parameters of the complex $SCNCu(N,N',N''-Py_3P=O)$, **1**, in gas phase (isolated molecule), in CHCl₃ solution and in crystal.

Medium	Gas	CHCl ₃ solution $(\epsilon = 4.71)$	Crystal
Method	B3LYP/ def2-TZVPP	C-PCM B3LYP/ def2-TZVPP	X-Ray
Cu(1)–N(1)	1.898	1.919	1.889(2)
Cu(1)–N(2)	2.140	2.138	2.094(2)
Cu(1) - N(3)	2.146	2.142	2.068(2)
Cu(1)-N(4)	2.143	2.140	2.081(2)

P(1)-O(1)	1.482	1.486	1.4805(19)
N(1)–C(1)	1.177	1.173	1.150(3)
S(1)–C(1)	1.620	1.633	1.627(3)
N(1)-Cu(1)-N(3)	123.4	122.8	126.20(9)
N(1)-Cu(1)-N(4)	122.9	122.4	126.34(9)
N(1)-Cu(1)-N(2)	122.8	122.4	112.35(10)
C(1)-N(1)-Cu(1)	179.9	179.9	166.2(2)
N(1)-C(1)-S(1)	180.0	180.0	179.3(3)
τ_4^a	0.81	0.81	0.76

" τ_4 is the four-coordinate geometry index.

Table S4. Selected structural parameters of the complex NCSCu(N,N',N''-Py₃P=O), 1[/], in gas phase (isolated molecule), in CHCl₃ solution.

Medium	Gas	CHCl ₃ solution $(\varepsilon = 4.71)$	
Method	B3LYP/	C-PCM B3LYP/	
wiethou	def2-TZVPP	def2-TZVPP	
Cu(1)–S(1)	2.273	2.287	
Cu(1)–N(2)	2.125	2.117	
Cu(1)–N(3)	2.158	2.147	
Cu(1)–N(4)	2.155	2.147	
P(1)-O(1)	1.483	1.486	
N(1)-C(1)	1.165	1.166	
S(2)–C(1)	1.677	1.671	
S(1)-Cu(1)-N(3)	127.3	126.8	
S(1)-Cu(1)-N(4)	120.3	119.7	
S(1)-Cu(1)-N(2)	120.4	119.8	
C(1)-S(1)-Cu(1)	96.1	101.2	
N(1)-C(1)-S(1)	179.2	179.4	
τ_4^a	0.80	0.80	

" τ_4 is the four-coordinate geometry index.

Table S5. Selected structural parameters of the complex $(N,N'-Py_3P=O)Cu^{(NCS)}Cu(N,N'-Py_3P=O)$, **2**, in gas phase (isolated molecule), in CHCl₃ solution and in crystal.

Medium	Gas	CHCl ₃ solution $(\epsilon = 4.71)$	Crystal
Method	B3LYP/ def2-TZVPP	C-PCM B3LYP/ def2-TZVPP	X-Ray
Cu(1)–N(1)	1.957	1.961	1.925(9)
Cu(1)–N(2)	2.126	2.122	2.075(9)
Cu(1) - N(4)	2.146	2.131	2.074(9)
Cu(1)–S(1 [/])	2.463	2.508	2.400(3)
P(1)-O(1)	1.484	1.489	1.472(8)
N(1)–C(1)	1.166	1.167	1.181(14)
S(1)–C(1)	1.651	1.649	1.623(11)
N(1)-Cu(1)-S(1')	107.1	104.4	102.1(3)
N(1)-Cu(1)-N(4)	120.1	123.1	125.4(4)
N(1)-Cu(1)-N(2)	123.2	122.7	118.1(4)

C(1)–N(1)–Cu(1)	158.0	159.4	161.9(9)
N(1)-C(1)-S(1)	179.2	179.1	178.3(11)
$ au_4{}^a$	0.83	0.81	0.83

" τ_4 is the four-coordinate geometry index.

Table S6. Selected structural parameters of the complex SCNCu(N,N',N''-Py₃P=O), **1**, in its S₀ and T₁ states calculated at the C-PCM (ϵ = 4.71) B3LYP/def2-TZVPP level of theory.

	So	T ₁	Δ^{a}
Cu(1) - N(1)	1.919	1.889	0.030
Cu(1) - N(2)	2.138	2.124	0.014
Cu(1) - N(3)	2.142	1.930	0.212
Cu(1) - N(4)	2.140	2.124	0.016
P(1)-O(1)	1.486	1.487	-0.001
N(1)-C(1)	1.173	1.179	-0.006
S(1)-C(1)	1.633	1.609	0.024
N(1)-Cu(1)-N(3)	122.8	151.2	-28.4
N(1)-Cu(1)-N(4)	122.4	105.2	17.2
N(1)-Cu(1)-N(2)	122.4	105.2	17.2
C(1)-N(1)-Cu(1)	179.9	165.9	14.0
N(1)-C(1)-S(1)	180.0	178.8	1.2
$\tau_4{}^{\boldsymbol{b}}$	0.81	0.73	

^{*a*} Differences between structural parameters of S_0 and T_1 states of complex 1. ^{*b*} τ_4 is the four-coordinate geometry index.

Table S7. Selected structural parameters of the complex $CuNCS[SCNCu(N,N',N''-Py_3P=O)]_2$, **4**, in gas phase (isolated molecule), in CHCl₃ solution and in crystals.

Medium	Gas	CHCl ₃ solution $(\epsilon = 4.71)$	Crystal	
Method	B3LYP/ def2-TZVPP	C-PCM B3LYP/ def2-TZVPP	X-Ray	
Cu(1)–N(7)	1.926	1.928	1.912(3)	
Cu(1)-S(2)	2.334	2.324	2.2266(10)	
Cu(1)–S(3)	2.334	2.324	2.2412(11)	
Cu(2)–N(8)	1.909	1.922	1.895(3)	
Cu(2)–N(5)	2.149	2.140	2.034(3)	
Cu(2)–N(4)	2.144	2.140	2.086(3)	
Cu(2)–N(6)	2.119	2.126	2.095(3)	
Cu(3)–N(9)	1.909	1.922	1.896(3)	
Cu(3)–N(1)	2.144	2.140	2.063(3)	
Cu(3)–N(3)	2.149	2.140	2.066(3)	
Cu(3)–N(2)	2.120	2.126	2.079(3)	
N(7)–C(2)	1.170	1.171	1.137(5)	
N(8)–C(3)	1.168	1.166	1.147(4)	
N(9)–C(19)	1.168	1.166	1.135(4)	
S(1)-C(2)	1.639	1.636	1.634(4)	
S(2)-C(3)	1.643	1.652	1.657(4)	
S(3)-C(19)	1.644	1.652	1.658(4)	
P(1)-O(1)	1.483	1.486	1.485(2)	
P(2)-O(2)	1.483	1.486	1.481(3)	
N(7)-Cu(1)-S(2)	128.0	126.5	126.09(10)	

N(7)-Cu(1)-S(3)	128.1	126.5	121.03(10)
S(2)-Cu(1)-S(3)	103.9	107.0	112.88(4)
N(8)-Cu(2)-N(4)	122.6	122.1	118.21(13)
N(8)-Cu(2)-N(5)	121.7	122.0	131.56(13)
N(8)-Cu(2)-N(6)	123.3	122.6	113.32(12)
N(9)-Cu(3)-N(1)	122.6	122.1	122.38(12)
N(9)-Cu(3)-N(2)	123.2	122.6	120.27(12)
N(9)-Cu(3)-N(3)	121.8	122.0	120.38(12)
C(2)-N(7)-Cu(1)	179.1	179.5	176.3(3)
N(7)-C(2)-S(1)	179.9	180.0	179.5(4)
C(3)-S(2)-Cu(1)	103.5	103.6	104.7(1)
C(19)-S(3)-Cu(1)	103.5	103.6	103.6(1)
C(3)-N(8)-Cu(2)	173.4	178.0	167.6(3)
N(8)-C(3)-S(2)	178.3	178.4	178.2(3)
C(19)-N(9)-Cu(3)	173.4	178.0	173.6(3)
N(9)-C(19)-S(3)	178.3	178.4	177.8(4)
$\tau_4 [{\rm Cu}(2)/{\rm Cu}(3)]^a$	0.81 / 0.81	0.82 / 0.82	0.82 / 0.83
$\Delta_{\mathrm{Cu}(1)}^{\boldsymbol{b}}$	0.003	0.000	0.002
$\Delta_{\mathrm{S}(1)}^{c}$	0.007	0.308	0.184
$\Delta_{\mathrm{S}(2)}^{c}$	0.018	0.083	0.502
$\Delta_{\mathrm{S}(3)}^{c}$	0.017	0.082	0.469
$\Delta_{\rm N(7)}^{d}$	0.017	0.115	0.055
$\Delta_{\rm N(8)}{}^d$	0.014	0.029	0.451
$\Delta_{\rm N(9)}^{d}$	0.013	0.028	0.326
1 1 / /			1

^{*a*} τ_4 is the four-coordinate geometry index. ^{*b*} $\Delta_{Cu(1)}$ is the displacement of the Cu(1) atom out of the plane of N(7), S(2) and S(3) atoms. ^{*c*} $\Delta_{S(n)}$ is the displacement of the S(n) atom out of the plane of three Cu atoms, n = 1-3. ^{*d*} $\Delta_{N(n)}$ is the displacement of the N(n) atom out of the plane of three Cu atoms, n = 7-9.

Table S8. Singlet-singlet electronic transitions (oscillator strength, f, is equal to or greater than 0.01) in the absorption spectra of the complex 1 in CHCl₃ solution.

Transitions	Character	<i>E</i> (eV)	λ (nm)	f
HOMO-4 \rightarrow LUMO (2%)	(M+L ^{SCN})LCT	2.4457	506.95	0.0099
HOMO-3 \rightarrow LUMO+1 (2%)				
HOMO-1 \rightarrow LUMO+1 (38%)				
HOMO \rightarrow LUMO (55%)				
HOMO-4 \rightarrow LUMO+1 (2%)	(M+L ^{SCN})LCT	2.4463	506.82	0.0100
HOMO-3 \rightarrow LUMO (2%)				
HOMO-1 \rightarrow LUMO (49%)				
HOMO \rightarrow LUMO+1 (44%)				
HOMO-6 \rightarrow LUMO+1 (2%)	(M+L ^{SCN})LCT	3.1807	389.80	0.0095
HOMO-5 \rightarrow LUMO (3%)				
HOMO-4 \rightarrow LUMO (18%)				
HOMO-3 \rightarrow LUMO+1 (16%)				

(M+L ^{SCN})LCT	3.1813	389.73	0.0095
(M+L ^{SCN})LCT	3.1919	388.43	0.0143
(M+L ^{SCN})LCT	3.1924	388.37	0.0145
(M+L ^{SCN})LCT	3.4239	362.12	0.0453
(M+LSCN)LCT	3 7668	329.15	0.0374
(MI+L ^{Ser(})LCI	5.7000	527.15	
(MI+L ^{SEN})LCI	5.7000	527.15	
(MI+L ^{SEC})LCI	5.7000	527.15	
(MI+L ^{SEC})LCI	5.7000	527.15	
	(M+L ^{SCN})LCT (M+L ^{SCN})LCT (M+L ^{SCN})LCT	(M+L ^{SCN})LCT 3.1813 (M+L ^{SCN})LCT 3.1919 (M+L ^{SCN})LCT 3.1924 (M+L ^{SCN})LCT 3.1924 (M+L ^{SCN})LCT 3.4239	(M+L ^{SCN})LCT 3.1813 389.73 (M+L ^{SCN})LCT 3.1919 388.43 (M+L ^{SCN})LCT 3.1924 388.37 (M+L ^{SCN})LCT 3.1924 388.37 (M+L ^{SCN})LCT 3.1924 388.37 (M+L ^{SCN})LCT 3.4239 362.12

HOMO-3 \rightarrow LUMO+2 (89%)				
HOMO-1 \rightarrow LUMO+2 (3%)				
HOMO-5 \rightarrow LUMO+2 (8%)	(M+L ^{SCN})LCT	3.8589	321.29	0.0195
HOMO-4 \rightarrow LUMO+2 (89%)				
HOMO \rightarrow LUMO+2 (3%)				
HOMO-4 \rightarrow LUMO+3 (34%)	(M+L ^{SCN})LCT	3.9651	312.69	0.0075
HOMO-4 \rightarrow LUMO+4 (19%)				
HOMO-3 \rightarrow LUMO+3 (12%)				
HOMO−3 → LUMO+4 (25%)				
HOMO−5 → LUMO+2 (91%)	(M+L ^{SCN})LCT	4.3099	287.67	0.0056
HOMO-4 \rightarrow LUMO+2 (7%)				
HOMO-6 \rightarrow LUMO+2 (91%)	(M+L ^{SCN})LCT	4.3125	287.50	0.0056
HOMO−3 → LUMO+2 (6%)				
HOMO-6 \rightarrow LUMO+3 (13%)	(M+L ^{SCN})LCT	4.4350	279.56	0.0112
HOMO-6 \rightarrow LUMO+4 (37%)				
HOMO-5 \rightarrow LUMO+3 (31%)				
HOMO−5 → LUMO+4 (12%)				
HOMO-7 \rightarrow LUMO (5%)	ILT	4.9596	249.99	0.0141
HOMO-5 \rightarrow LUMO+5 (85%)	(M+L ^{SCN})LCT			
HOMO-4 \rightarrow LUMO+5 (5%)				
HOMO-7 \rightarrow LUMO+1 (5%)	ILT	4.9622	249.86	0.0144
HOMO-6 \rightarrow LUMO+5 (85%)	(M+L ^{SCN})LCT			
HOMO-3 \rightarrow LUMO+5 (5%)				
HOMO-7 \rightarrow LUMO (78%)	ILT	5.0823	243.95	0.2055
HOMO-5 \rightarrow LUMO+5 (6%)	(M+L ^{SCN})LCT			
HOMO-1 \rightarrow LUMO+7 (3%)				
HOMO-7 \rightarrow LUMO+1 (79%)	ILT	5.0846	243.84	0.2065
HOMO-6 \rightarrow LUMO+5 (6%)	(M+L ^{SCN})LCT			
HOMO \rightarrow LUMO+7 (3%)				
HOMO-11 \rightarrow LUMO (7%)	ILT	5.1780	239.45	0.0502
HOMO-11 \rightarrow LUMO+1 (3%)				
HOMO-10 \rightarrow LUMO (2%)				
HOMO-10 \rightarrow LUMO+1 (7%)				
HOMO-9 \rightarrow LUMO (21%)				
HOMO-9 \rightarrow LUMO+1 (15%)				
	I			

HOMO−8 → LUMO (14%)				
HOMO−8 → LUMO+1 (21%)				
HOMO-7 \rightarrow LUMO (2%)				
HOMO-7 \rightarrow LUMO+1 (4%)				
HOMO-11 \rightarrow LUMO (3%)	ILT	5.1782	239.43	0.0482
HOMO-11 \rightarrow LUMO+1 (7%)				
HOMO-10 \rightarrow LUMO (7%)				
HOMO-10 \rightarrow LUMO+1 (3%)				
HOMO−9 → LUMO (14%)				
HOMO-9 \rightarrow LUMO+1 (21%)				
HOMO-8 \rightarrow LUMO (20%)				
HOMO−8 → LUMO+1 (14%)				
HOMO-7 \rightarrow LUMO (4%)				
HOMO-7 \rightarrow LUMO+1 (3%)				

Figure S27. Molecular orbitals involved in the electronic transitions of the complex 1.

Structural and thermochemical data for the computed structures

Com	plex 1, SCN	Cu(<i>N,N',N"</i> -P	y₃P=O), B3LYP,	/def2-TZVPP		
Cu	-1.084222	-0.011872	-0.001326			
Р	2.142947	0.006446	-0.005992	y 🌳 y		
0	3.625350	0.012357	-0.010217			
N	0.089374	-1.709161	-0.568125			
Ν	0.085756	0.356727	1.759124	I I I I I		
N	0.074204	1.342471	-1.192024			
С	-4.159247	-0.008301	0.004284			
С	1.425127	-1.592360	-0.539040	l Î		
С	1.421937	0.337419	1.645630	•		
С	-0.449108	0.597281	2.958530			
н	-1.530525	0.603545	3.002655			
С	0.329070	0.826401	4.086928	v		
н	-0.148397	1.016701	5.037812			
С	1.711606	0.805501	3.966860	Electronic Energy = -3291.787633 a.u.		
н	2.342718	0.980200	4.827856			
С	2.275161	0.556213	2.721016	- Thermochemistry -		
Н	3.344699	0.528415	2.567987	Temperature 298.150 Kelvin. Pressure 1.00000 Atm.		
С	1.410990	1.267392	-1.115394	Sum of electronic and zero-point Energies=-3291.532888 a.u.		
С	-0.467939	2.260923	-1.995157	Sum of electronic and thermal Energies=-3291.510595 a.u.		
н	-1.549593	2.285169	-2.025093	Sum of electronic and thermal Enthalpies=-3291.509651 a.u.		
с	0.303309	3.136894	-2.749651	Sum of electronic and thermal Free Energies=-3291.588535 a.u.		
Н	-0.179965	3.864696	-3.386131			
С	1.686577	3.057252	-2.668368			
н	2.312440	3.726118	-3.243748			
С	2.257665	2.102997	-1.834591			
н	3.328052	1.994810	-1.731407			
С	2.282553	-2.627433	-0.893563			
н	3.351331	-2.472799	-0.850319			
С	1.724188	-3.835332	-1.294744			
н	2.358758	-4.664216	-1.578319			
С	0.342115	-3.959175	-1.325081			
н	-0.131594	-4.881396	-1.630794			
С	-0.440513	-2.872343	-0.954249			
н	-1.521684	-2.921168	-0.961975			
Ν	-2.982246	-0.010116	0.003598			
S	-5.779460	-0.005671	0.005194			
Com	plex 1, SCN	Cu(<i>N,N',N"</i> -P	y₃P=O), B3LYP,	/def2-TZVPP, C-PCM (CHCl₃)		
Cu	-1.072483	0.009590	-0.002896			
P	2.132458	-0.004076	-0.005265	Electronic Energy = -3291 81302819 a u		
0	3.618268	-0.008488	-0.008919			
N	0.083017	1.710403	-0.586359	- Thermochemistry -		
N	0.071709	-1.358386	-1.185671	Temperature 298.150 Kelvin, Pressure 1 00000 Atm		
N	0.080414	-0.342413	1.768234	Sum of electronic and zero-point Energies=-3291 558227 a u		
с	-4.164306	0.005897	0.002960	Sum of electronic and thermal Energies=-3291 536001 au		
C	1.419913	1.590930	-0.552807	Sum of electronic and thermal Enthalpies=-3291 535057 au		
C	1.409406	-1.277260	-1.104715	Sum of electronic and thermal Free Energies=-3291.613067 au		
C	-0.459411	-2.288576	-1.983721			
H	-1.539732	-2.324545	-2.023897			
с	0.317705	-3.168771	-2.726639			

Н	-0.160236	-3.904181	-3.357652	
С	1.699406	-3.082348	-2.639892	
н	2.331606	-3.753303	-3.204905	
С	2.260678	-2.116650	-1.812288	
н	3.330346	-2.007788	-1.709245	
C	1.417719	-0.321819	1.650365	
C	-0.446005	-0.573924	2.973827	
Н	-1.526134	-0.583368	3.030668	
C	0.335591	-0.792146	4.101694	
Н	-0.138532	-0.974900	5.055242	
C	1,716802	-0.769877	3,976060	
н	2.352440	-0.935901	4.834818	
C	2 273220	-0 529984	2 724898	
н	3 342383	-0 502705	2 573777	
C	2 2790/18	2 621200	-0.913683	
н	2.275040	2.021200	-0.868236	
	1 777187	2.405501	-0.808230	
Ц	2 365826	1 651726	-1.527041	
	0.346388	2 055722	-1.013323	
	-0 124542	J. 9759722	-1.502488	
	-0.124342	4.073043 2 072751	-1.077103	
	-0.459069	2.0/5/51	-0.964490	
	-1.516940	2.955904	-0.996501	
	-2.991476	0.007295	0.001036	
3	-5.797759	0.003647	0.004655	
Con	nplex 1, SCN	Cu(<i>N,N',N"</i> -P	y₃P=O), B3LYP/	/def2-TZVPP, C-PCM (CHCl ₃), T ₁
Cu	-0.776787	-0.000125	0.854075	• • · ·
P	1.888600	-0.000072	-0.883441	
0	3.109095	-0.000173	-1.732733	
N	-0.313169	1.589102	-0.476472	
N	-0.313214	-1.589260	-0.476177	
N	0.975634	-0.000093	1.661859	
C	-3.821031	0.000150	0.781446	
C	0.825178	1.463881	-1.191319	
C	0.824991	-1.463927	-1.191235	
C	-1.059363	-2.688771	-0.624988	
H	-1.963275	-2.739231	-0.033490	•
C	-0.708453	-3.710855	-1.492979	
H	-1.344980	-4.578705	-1.584535	Electronic Energy = -3291.73969381 a.u.
C	0.462991	-3.588711	-2.233159	
H	0.761154	-4.365728	-2.923556	- Thermochemistry -
C	1.242749	-2.451103	-2.077781	Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
H	2.160269	-2.312042	-2.630644	Sum of electronic and zero-point Energies=-3291.48/085 a.u.
C	2.121488	-0.000061	0.869567	Sum of electronic and thermal Energies=-3291.465118 a.u.
C	1.130286	-0.000055	3.014459	Sum of electronic and thermal Enthalpies=-3291.4641/4 a.u.
H	0.217657	-0.000125	3.596737	Sum of electronic and thermal Free Energies=-3291.541803 a.u.
C	2.354062	0.000046	3.622745	
H	2.408683	0.000049	4.701562	
C	3.535105	0.000123	2.820316	
H	4.513967	0.000215	3.277272	
C	3.395658	0.000075	1.450754	
H	4.258172	0.000115	0.797971	
C	1.243145	2.451184	-2.077622	
		2 21 21 05	2 6 2 0 2 2 4	
Н	2.160773	2.312195	-2.030324	

н	0.761752	4.365950	-2.923194	
C	-0.708178	3.710856	-1.493047	
н	-1.344683	4.578721	-1.584614	
С	-1.059279	2.688636	-0.625289	
н	-1.963328	2.739008	-0.033988	
N	-2.660608	0.000014	0.987193	
S	-5.411142	0.000347	0.532999	
Con	nplex 1 [/] , NCS	Cu(<i>N,N',N"</i> -P	Py₃P=O), B3LYP	/def2-TZVPP
Cu	-1.059988	0.185984	0.661315	
Р	1.791195	-0.213560	-0.775076	9
0	3.101819	-0.397969	-1.442986	
N	-0.877846	-0.374126	-1.380598	
Ν	0.394912	-1.261052	1.330342	I I I I I
N	0.402932	1.761110	0.509412	
С	-4.022335	0.161543	0.569275	
С	0.361604	-0.511338	-1.880098	
С	1.548576	-1.338403	0.651320	
С	0.202494	-2.090585	2.357907	e
н	-0.746277	-1.996307	2.870825	•
с	1.155263	-3.023627	2.748919	
Н	0.955345	-3.675632	3.587556	Electronic Energy = -3291.78480281 a.u.
с	2.350663	-3.098773	2.047588	
н	3.111066	-3.814944	2.328748	- Thermochemistry -
с	2.555800	-2.240583	0.973784	Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
н	3.464124	-2.256952	0.388344	Sum of electronic and zero-point Energies=-3291.530109 a.u.
C	1.556231	1.478859	-0.113460	Sum of electronic and thermal Energies=-3291.507917 a.u.
c	0.217114	2.996462	0.979276	Sum of electronic and thermal Enthalpies=-3291.506972 a.u.
н	-0.731689	3,179203	1.467610	Sum of electronic and thermal Free Energies=-3291.583753 a.u.
C	1,176499	3,993345	0.849549	
н	0.981997	4,980138	1.245553	
C	2 371358	3 697859	0 208021	
н	3 136644	4 453562	0.092073	
C	2,569618	2,414532	-0.287184	
н	3,477388	2,127902	-0.798865	
C	0.611014	-0.871139	-3.198214	
н	1 631416	-0.965561	-3 541425	
C	-0.476525	-1.098862	-4.034435	
н	-0.322138	-1.380993	-5.067382	
C	-1.756627	-0.958663	-3.521362	
Н	-2.630058	-1.126466	-4.135501	
C	-1.921286	-0.594432	-2.188634	
н	-2.906299	-0.474601	-1.751803	
S	-2 979166	0 508953	1 834947	
N	-4.733492	-0.082526	-0.320083	
Con	nplex 1 [/] , NCS	Cu(<i>N,N',N"</i> -P	Py₃P=O), B3LYP	/def2-TZVPP, C-PCM (CHCl₃)
<u> </u>	1 051517	-0 6/1757	-0 038002	
P	-1 200227	0.041/0/	0.026260	Electronic Energy - 2201 90757207 e.v.
	-3 132082	1 /27250	0.040200	Electronic Energy = -3291.80757397 a.u.
N	0 8/1 970	1 /6125/	0.000200	
N	_0 221 <i>1</i> 0 <i>1 3</i>	-1 016/97	1 507270	- Inermochemistry -
N	-0.301434 -0.301434	-1.040407 -0 861353	-1 610202	remperature 298.150 Kelvin. Pressure 1.00000 Atm.
	-0.304430 /1 1227/12	-0.004232 -0 587868	-1.019393	Sum of electronic and zero-point Energies=-3291.5529/4 a.u.
	4.133240 -0 100025		0.037177	Sum of electronic and the read Early later 2221.5306/0 a.u.
	0.403303	T.742022	0.112030	sum of electronic and thermal Enthalpies=-3291.529725 a.u.

С	-1.548987	-0.387237	1.441849	Sum of electronic and thermal Free Energies=-3291.607558 a.u.
С	-0.183416	-1.886379	2.527058	
н	0.770487	-2.396394	2.547535	
C	-1.137494	-2.101463	3.513873	
н	-0.930077	-2.791235	4.319255	
C	-2.343401	-1.419616	3.442074	
н	-3.105829	-1.565298	4.194811	
C	-2.557095	-0.542408	2.385139	
н	-3.477404	0.013964	2.284428	
C	-1.552360	-0.218829	-1.473858	
C	-0.189015	-1.580369	-2.729497	
н	0.765285	-2.083355	-2.812043	
C	-1.146244	-1.681846	-3.731406	
н	-0.940724	-2.274060	-4.611476	
C	-2.352741	-1.014842	-3.577326	
н	-3.117986	-1.073871	-4.338945	
C	-2.563583	-0.265724	-2.425450	
н	-3.484395	0.273583	-2.258436	
C	-0.687866	3.307434	0.191378	
н	-1.713692	3.644837	0.211490	
C	0.377754	4.199039	0.241994	
н	0.197774	5.263449	0.303339	
C	1.670560	3.698686	0.212306	
н	2.527742	4.355395	0.249611	
C	1.862012	2.324316	0.132816	
н	2.855467	1.896191	0.107491	
S	3.009031	-1.821808	-0.105779	
Ν	4.927314	0.264773	0.010849	
			SCN	

Complex 2, (*N*,*N*'-Py₃P=O)Cu^(NCS)Cu(*N*,*N*'-Py₃P=O), B3LYP/def2-TZVPP

Cu	2.508675	0.545734	0.153670
S	-1.013307	-2.448148	-0.611515
Ρ	5.790549	-0.285495	-0.155561
0	7.265929	-0.416697	-0.251153
Ν	1.372789	-1.002897	-0.224561
Ν	3.958422	0.573347	1.708629
Ν	4.750639	-2.609916	0.624977
Ν	3.857522	1.282423	-1.344504
С	0.390212	-1.608823	-0.386000
С	3.592617	0.983134	2.927781
Н	2.544573	1.223215	3.049861
С	4.492760	1.113596	3.976584
Н	4.141894	1.442553	4.944763
С	5.830927	0.821934	3.754811
Н	6.557636	0.915906	4.550715
С	6.221144	0.404908	2.489300
Н	7.247434	0.163836	2.252058
С	5.252629	0.284767	1.500055
С	4.861404	-1.830080	-0.454229
С	4.417356	-2.208565	-1.717453
Н	4.523857	-1.545669	-2.564470
С	3.817436	-3.451963	-1.859133
Н	3.445781	-3.775249	-2.822076
С	3.689568	-4.262456	-0.741716

Electronic Energy = -6583.58667797 a.u.

- Thermochemistry -

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and zero-point Energies=-6583.077259 a.u. Sum of electronic and thermal Energies=-6583.030593 a.u. Sum of electronic and thermal Enthalpies=-6583.029648 a.u. Sum of electronic and thermal Free Energies=-6583.166609 a.u.

Н	3.216818	-5.232687	-0.804919	
С	4.173363	-3.798179	0.477241	
Н	4.089236	-4.405494	1.371128	
C	5.161004	0.956659	-1.352056	
C	3,429703	2,200685	-2.216884	
н	2.377810	2.449106	-2.161645	
C	4.274848	2.819485	-3.129056	
н	3 875513	3 552220	-3 816348	
C	5 621554	2 485847	-3 132128	
н	6 306475	2 953843	-3 826627	
C	6 076249	1 539765	-2 222092	
н	7 113868	1 242382	-2 167332	
	-2 508683	-0 545709	-0 153803	
s	1 013200	2 1/8100	0.133003	
D	-5 700542	0.285468	0.011273	
	-7 265016	0.205400	0.155712	
N	-7.203910	1 002044	0.231432	
	2 059565	1.002944	1 709621	
	-3.936303	-0.373303	-1.708031	
	-4.750725	2.009895	-0.024958	
	-3.85/388	-1.282410	1.344499	
	-0.390220	1.608878	0.385748	
	-3.592861	-0.983154	-2.927811	
П	-2.544824	-1.223221	-3.049981	
	-4.493094	-1.113638	-3.9/6534	
Н	-4.142308	-1.442597	-4.944741	
C	-5.831246	-0.821993	-3./5464/	
Н	-6.558023	-0.915983	-4.550486	
С 	-6.221359	-0.404964	-2.489104	
Н	-7.247631	-0.163905	-2.251775	
С	-5.252758	-0.284801	-1.499946	
С	-4.861391	1.830068	0.454286	
С	-4.417243	2.208570	1.717469	
Н	-4.523666	1.545681	2.564501	
С	-3.817324	3.451976	1.859087	
Н	-3.445593	3.775277	2.821996	
С	-3.689557	4.262459	0.741651	
Н	-3.216813	5.232696	0.804805	
С	-4.173447	3.798164	-0.477261	
Н	-4.089402	4.405471	-1.371162	
С	-5.160874	-0.956667	1.352164	
С	-3.429477	-2.200658	2.216849	
Н	-2.377586	-2.449062	2.161519	
С	-4.274532	-2.819463	3.129101	
Н	-3.875125	-3.552186	3.816364	
С	-5.621243	-2.485845	3.132289	
Н	-6.306095	-2.953845	3.826853	
С	-6.076034	-1.539778	2.222286	
Н	-7.113661	-1.242412	2.167615	
			SCN	
Com	nplex 2, (N,N	′-Py₃P=O)Cu	^{NCS⁾Cu(N,N'-P}	y₃P=O), B3LYP/def2-TZVPP, C-PCM (CHCl₃)
Cu	2.571014	0.525092	0.102115	
S	-1.015084	-2.457245	-0.470169	Electronic Energy = -6583 61836162 a u
P	5.868103	-0.197635	-0.086742	LICENSING LICEBY - 0303.01030102 a.u.
О	7.353732	-0.289387	-0.130350	- Thermochemistry -

Ν	1.382890	-1.009933	-0.178159
Ν	3.957561	0.639988	1.703876
Ν	4.925359	-2.558217	0.732551
Ν	3.913069	1.230112	-1.395340
С	0.394907	-1.618867	-0.300417
С	3.545166	1.070183	2.901347
н	2.484996	1.259908	2.998800
С	4.412158	1.279446	3.965674
Н	4.022494	1.622084	4.913501
С	5.766768	1.046278	3.783619
Н	6.469725	1.202829	4.590168
c	6.205381	0.604443	2.541524
н	7.248521	0.407018	2.343405
C	5.269752	0.405498	1,534573
c	5 030122	-1 798236	-0 363702
c	4 663817	-2 236728	-1 632783
н	4 767380	-1 593368	-2 494839
Ċ	4.767560	-3 522777	-1 76/1937
ц	2 855585	-3.896037	-1.704557
C	1 025685	-3.850052	-2.734484
с ц	4.035085	-4.313194 E 217E10	0.031781
п С	3.040200	-3.31/310	-0.000220
с ц	4.454529	-5./6//41	1 407964
	4.555449	-4.3/9/05	1.497604
C	5.230859	0.903420	-1.352902
C II	3.472430	2.078318	-2.330576
H	2.409991	2.279884	-2.326193
C	4.314579	2.685700	-3.253251
Н	3.902380	3.358980	-3.991092
C	5.6/324/	2.414964	-3.202297
Н	6.356904	2.8/4148	-3.902960
C	6.141823	1.539239	-2.230143
Н	/.1899/9	1.294083	-2.142311
Cu	-2.571022	-0.525102	-0.102089
S	1.015077	2.457225	0.470243
Ρ	-5.868106	0.197649	0.086711
0	-7.353734	0.289419	0.130297
Ν	-1.382897	1.009923	0.178190
Ν	-3.957546	-0.640018	-1.703866
Ν	-4.925326	2.558211	-0.732601
Ν	-3.913104	-1.230094	1.395358
С	-0.394915	1.618852	0.300473
С	-3.545136	-1.070233	-2.901324
Н	-2.484967	-1.259969	-2.998757
С	-4.412114	-1.279501	-3.965662
Н	-4.022438	-1.622155	-4.913479
С	-5.766724	-1.046317	-3.783632
Н	-6.469670	-1.202872	-4.590190
С	-6.205353	-0.604461	-2.541550
Н	-7.248494	-0.407023	-2.343450
С	-5.269738	-0.405512	-1.534587
С	-5.030106	1.798244	0.363660
С	-4.663805	2.236745	1.632738
Н	-4.767381	1.593396	2.494801
С	-4.155604	3.522785	1.764879
Н	-3.855537	3.896042	2.734422

Temperature	298.150 Kelvin.	Pressure	1.00000 Atm.
Sum of electro	onic and zero-poi	nt Energie	s=-6583.108885 a.u.
Sum of electro	onic and thermal	Energies=	-6583.062068 a.u.
Sum of electro	onic and thermal	Enthalpies	s=-6583.061123 a.u.
Sum of electro	onic and thermal	Free Energ	gies=-6583.199568 a.u.

С	-4.035622	4.313185	0.631715	
Н	-3.640107	5.317497	0.688149	
С	-4.434491	3.787734	-0.593845	
Н	-4.355363	4.379732	-1.497935	
С	-5.230891	-0.963399	1.352957	
С	-3.472484	-2.078288	2.330614	
Н	-2.410047	-2.279863	2.326249	
С	-4.314651	-2.685648	3.253287	
Н	-3.902468	-3.358919	3.991145	
С	-5.673317	-2.414902	3.202310	
Н	-6.356986	-2.874068	3.902971	
С	-6.141872	-1.539189	2.230135	
Н	-7.190025	-1.294026	2.142284	
Cor	nplex 4, Cu	NCS[SCN0	Cu(<i>N,N',N''</i> -l	Py ₃ P=O)] ₂ , B3LYP/def2-TZVPP
		٩		

Cu	5.447443	-0.678417	0.017393
Р	7.808392	1.493993	-0.025461
0	8.905467	2.491279	-0.044103
Ν	6.869607	-0.490461	1.610470
Ν	5.079552	1.405365	-0.098630
Ν	6.964656	-0.650457	-1.504090
С	3.123416	-2.687875	0.026036
С	7.809251	0.459183	1.487748
С	6.138892	2.231538	-0.114405
С	3.856192	1.939014	-0.158953
Н	3.020431	1.252634	-0.140245
С	3.645937	3.311784	-0.239771
Н	2.627944	3.672451	-0.281720
С	4.742512	4.159250	-0.258425
Н	4.610351	5.231297	-0.320495
С	6.020502	3.612329	-0.193492
Н	6.911130	4.224502	-0.202242
С	7.898948	0.308411	-1.420696
С	7.022351	-1.508191	-2.525812
Н	6.247779	-2.263366	-2.556592
С	8.012478	-1.442701	-3.498465
Н	8.017417	-2.159060	-4.307875
С	8.979028	-0.450695	-3.408423
Н	9.762004	-0.374491	-4.150962
С	8.924602	0.446292	-2.348686
Н	9.647557	1.240374	-2.227148
С	8.774650	0.695577	2.459588
Н	9.506051	1.475752	2.303394
С	8.760029	-0.087769	3.607140

Electronic Energy = -8715.37348432 a.u.

- Thermochemistry -

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and zero-point Energies=-8714.851915 a.u. Sum of electronic and thermal Energies=-8714.799054 a.u. Sum of electronic and thermal Enthalpies=-8714.798110 a.u. Sum of electronic and thermal Free Energies=-8714.955931 a.u.

Н	9.494707	0.067853	4.385764	
С	7.787733	-1.069547	3.737540	
н	7.740105	-1.699142	4.614856	
С	6.860893	-1.238651	2.716415	
н	6.084598	-1.990304	2.775472	
Ν	4.058917	-1.988567	0.026779	
S	1.837126	-3.710869	0.025333	
0	-8.902090	2.495228	-0.043011	
Р	-7.806615	1.496177	-0.024866	
С	-7.898714	0.311859	-1.421076	
С	-6.135895	2.231054	-0.112722	
С	-8.774881	0.697321	2.459250	
н	-9.504891	1.478889	2.303509	
С	-8.761920	-0.087003	3.606152	
С	-7.791333	-1.070547	3.736000	
Ν	-6.871637	-0.491266	1.609655	
С	-7.809626	0.460088	1.487468	
Cu	-5.449613	-0.680531	0.016747	
Ν	-6.966067	-0.648587	-1.504905	
С	-7.024888	-1.505400	-2.527352	
н	-6.251621	-2.261892	-2.558478	
С	-8.014546	-1.437409	-3.500297	
н	-8.020438	-2.153108	-4.310285	
С	-8.979394	-0.443791	-3.409808	
н	-9.761966	-0.365624	-4.152569	
С	-8.923783	0.452254	-2.349341	
н	-9.645383	1.247509	-2.227431	
С	-6.015108	3.611706	-0.190603	
н	-6.904670	4.225433	-0.199089	
С	-4.736153	4.156467	-0.254711	
н	-4.602128	5.228337	-0.315842	
С	-3.641017	3.307122	-0.236479	
н	-2.622351	3.666021	-0.277824	
С	-3.853706	1.934641	-0.156890	
н	-3.019233	1.246670	-0.138568	
Ν	-5.077991	1.403065	-0.097353	
С	-6.864506	-1.240380	2.714990	
н	-6.089503	-1.993394	2.773656	
н	-7.745010	-1.700943	4.612810	
Ν	-4.061409	-1.991029	0.026000	
С	-3.125421	-2.689689	0.025217	
S	-1.838405	-3.711780	0.024466	
н	-9.496541	0.069229	4.384707	
Cu	-0.001165	-2.272269	0.011901	
Ν	-0.000478	-0.346154	0.000841	
С	0.000928	0.823555	0.013277	
S	0.002902	2.462829	0.034325	
Con	nplex 4, Cu	NCS[SCNC	Cu(<i>N,N',N''-</i> F	$P_{y_3}P=O)]_2$, B3LYP/def2-TZVPP, C-PCM (CHCl ₃)
Cu	5.518252	-0.625053	-0.002875	
Р	7.968348	1.422917	-0.032582	Electronic Energy = -8715.41354164 a.u.
0	9.109530	2.374350	-0.045073	
Ν	7.044042	-0.649162	1.496905	- Thermochemistry -
Ν	5.238947	1.480625	0.086133	Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Ν	6.909688	-0.532642	-1.625560	Sum of electronic and zero-point Energies=-8714.892134 a.u.

С	3.135533	-2.589160	0.015805
С	8.021746	0.264295	1.384474
С	6.339879	2.250484	0.065945
С	4.047529	2.081522	0.157126
Н	3.178498	1.438220	0.171250
С	3.909293	3.463208	0.210281
н	2.918837	3.890942	0.265781
С	5.048094	4.253829	0.189530
н	4.973739	5.331848	0.229443
С	6.292477	3.637286	0.115805
н	7.209824	4.207211	0.096336
С	7.899139	0.370001	-1.529299
С	6.854557	-1.297751	-2.719217
Н	6.043963	-2.012503	-2.763616
C	7.778199	-1.193940	-3.751987
н	7.689934	-1.836087	-4.616452
C	8,799462	-0.261060	-3.648314
н	9.533762	-0.155774	-4.434982
c	8 864045	0 539643	-2 513963
н	9 638/66	1 281361	-2.313305
C	9.058400	0.368402	2.384240
L L	9.005013	1 1 2 2 2 1 0	2.234703
п С	9.823307	0 5125319	2.134910
с ц	9.097393	-0.313343	3.306337 4.006E00
п С	9.695150		4.090309
	8.089419	-1.458890	3.488259
н С	8.074904	-2.163322	4.307412
C	7.081962	-1.493008	2.531960
H	6.278260	-2.214394	2.591799
N	4.051296	-1.866936	0.011698
5	1.868279	-3.648709	0.019515
0	-9.109583	2.3/42/6	-0.045585
Р	-7.968378	1.422874	-0.032862
C	-7.898913	0.369854	-1.529496
C	-6.339944	2.250491	0.065839
С	-9.065953	0.368507	2.294405
Н	-9.825649	1.123392	2.154390
С	-9.097864	-0.513358	3.368243
С	-8.089881	-1.458675	3.488180
Ν	-7.044241	-0.649064	1.496914
С	-8.021954	0.264359	1.384273
Cu	-5.518227	-0.625025	-0.002629
Ν	-6.909419	-0.532764	-1.625540
С	-6.854084	-1.297938	-2.719140
Н	-6.043461	-2.012669	-2.763362
С	-7.777558	-1.194218	-3.752069
Н	-7.689129	-1.836415	-4.616480
С	-8.798869	-0.261365	-3.648620
Н	-9.533044	-0.156152	-4.435414
С	-8.863665	0.539404	-2.514327
Н	-9.638133	1.281104	-2.384784
С	-6.292586	3.637298	0.115607
Н	-7.209944	4.207199	0.095969
С	-5.048229	4.253880	0.189456
н	-4.973909	5.331904	0.229294
С	-3.909410	3.463291	0.210409

Sum of electronic and thermal Energies=-8714.839195 a.u.
Sum of electronic and thermal Enthalpies=-8714.838251 a.u.
Sum of electronic and thermal Free Energies=-8714.996568 a.u.

H	-2.918973	3.891059	0.265993
C	-4.047602	2.081598	0.157338
н	-3.178554	1.438321	0.171607
N	-5.238993	1.480663	0.086235
С	-7.082288	-1.492834	2.532027
н	-6.278576	-2.214195	2.592035
н	-8.075466	-2.163036	4.307389
N	-4.051268	-1.866901	0.012204
C	-3.135519	-2.589143	0.016394
S	-1.868275	-3.648702	0.020210
Н	-9.895724	-0.460849	4.096097
Cu	0.000017	-2.266266	0.054394
N	0.000002	-0.338529	0.102768
С	-0.000026	0.831858	0.142475
S	-0.000055	2.467145	0.198133