Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

SUPPORTING INFORMATION

p -TsOH enables 2'-amino-[1, 1'-binaphthalene]-2-ol as a Chiral

Solvating Agent

A. Lakshmipriya^{a,c}, S. R. Chaudhari^b and N. Suryaprakash^{a,c*}

^aNMR Research Centre, ^cSolid State and Structural Chemistry Unit, Bangalore-560012, India,

^bPresent Address: Centre de RMN a TresHauts Champs, University of Lyon, UMR5280 CNRS / ENS Lyon / UCB Lyon 1,

69100 Villeurbanne, France

Index

S1: Experimental details

S2: 400 MHz ¹H-NMR spectrum of (R/S) -Mandelic acid and (R)-NOBIN in CDCl₃

S3: 400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Phenol in CDCl₃

S4: 400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Acetic acid in CDCl₃

S5: 400 MHz ¹H-NMR spectrum of (R/S)-Mandelic acid, (R)-NOBIN and Benzoic acid in CDCl₃

S6: 400 MHz ¹H-NMR spectrum of (*R/S*-Mandelic acid, (*R*)-NOBIN and Trifluoro acetic acid in CDCl₃

S7: 400 MHz ¹H-NMR spectrum of (R/S)-Mandelic acid, (R)-NOBIN and p-Toluenesulfonicacid in CDCl₃

S8: 400 MHz ¹H-NMR spectrum of (*R/S*)-3, 4-(Methylenedioxy) mandelicacid, (*R*)-NOBIN and p-TsOH in CDCl₃

S9: 400 MHz ¹H-NMR spectrum of (R/S)-4-(Trifluoromethyl)mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S10: 376 MHz ¹⁹F-NMR spectrum of (R/S) - 4-(Trifluoromethyl)mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S11: 400 MHz ¹H-NMR spectrum of (R/S)-4-Bromo mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

2

S12: 400 MHz ¹H-NMR spectrum of (R/S)-4-Chloromandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S13: 400 MHz ¹H-NMR spectrum of (*R/S*)-2-Hydroxy-3-methyl butyric acid, (*R*)-NOBIN and p-TsOH in CDCl₃

S14: 400 MHz ¹H-NMR spectrum of (*DL*)–Lactic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

S15: 400 MHz ¹H-NMR spectrum of Glycolic acid, (R)-NOBIN and p-TsOH in CDCl₃

S16: 400 MHz ¹H-NMR spectrum of (R/S)-4-Phenyl-2-oxazolidinone and (R)-NOBIN in CDCl₃

S17: 400 MHz ¹H-NMR spectrum of (R/S)-4-Phenyl-2-oxazolidinone, (R)-NOBIN and p-TsOH in CDCl₃

S18: 400 MHz ¹H-NMR spectrum of (R/S)-4-Phenyloxazolidine-2-thione, (R)-NOBIN and p-TsOH in CDCl₃

S19: 376 MHz ¹⁹F-NMR spectrum of (R/S)- α -Methoxy- α -(trifluoromethyl) phenylacetic acid, (R)-NOBIN and p-TsOH in CDCl₃

S20: 400 MHz ¹H-NMR spectrum of (R/S)-2-Methoxy-2-phenylacetic acid, (R)-NOBIN and p-TsOH in CDCl₃

S21: 400 MHz ¹H-NMR spectrum of (*R/S*)-2-Chloro propanoic acid and (*R*)-NOBIN in CDCl₃

S22: 400 MHz ¹H-NMR spectrum of (R/S)-2-Chloro propionic acid, (R)-NOBIN and p-TsOH in CDCl₃

S23: 400 MHz ¹H-NMR spectrum of (*R/S*)-Methylsuccinic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

S24: 161.9 MHz ³¹P-NMR spectrum of (*R/S*)-1, 1'-Binaphthyl-2, 2'-diyl hydrogenphosphate, (*R*)-NOBIN and p-TsOH in CDCl₃

S25: 400 MHz ¹H-NMR spectrum of (R/S)-Methyl 2, 3 dihydroxy 3-phenyl propionate, (R)-NOBIN and p-TsOH in CDCl₃

S26: 400 MHz ¹H-NMR spectrum of (R/S)-Methyl mandelate and (R)-NOBIN in CDCl₃

S27: 400 MHz ¹H-NMR spectrum of (R/S)-Methyl mandelate, (R)-NOBIN and p-TsOH in CDCl₃

S28: 400 MHz ¹H-NMR spectrum of (*R/S*) -Mandelonitrile, (*R*)-NOBIN and p-TsOH in CDCl₃

S29: 400 MHz ¹H-NMR spectrum of (R/S) -alpha Methyl benzyl amine, (R)-NOBIN in CDCl₃

S30: 400 MHz ¹H-NMR spectrum of (R/S) -N-Methyl-1-(1-naphthyl) ethylamine, (R)-NOBIN in CDCl₃

S31: 400 MHz ¹H-NMR spectrum of (R/S) - 2-Amino 1-butanol, (R)-NOBIN in CDCl₃

S32: 100 MHz ¹³C spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

S33: 500MHzHSQC spectrum of (R/S) -Mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S34: Stack plot of ¹H-NMR spectrum of (*R*)-NOBIN (a), 2-Chloro propionic acid and (*R*)-NOBIN (b), 2-Chloro propionic acid, (*R*)-NOBIN and different equivalents of P-Toluene sulfonic acid (c, d, e) in CDCl₃showing the deshielding of OH-group of (*R*)-NOBIN with dashed lines.

S35: Chemical shift difference for the selected proton of (*R/S*)-Mandelic acid in the presence of (*R*)-NOBIN and p-TsOH in different solvents

S36: 400 MHz ¹H-NMR spectrum of (R/S)-Mandelic acid, (R)-NOBIN and p-TsOH in C₆D₆

S37: 400 MHz ¹H-NMR spectrum of (R/S)-Mandelic acid, (R)-NOBIN and p-TsOH in toluened₈(C₇D₈)

S38: 400 MHz ¹H-NMR spectrum of (R/S)-mandelic acid, (R)-NOBIN and p-TsOH in methylenechloride-d₂ (CD₂Cl₂)

S39: 400 MHz ¹H-NMR spectrum pertaining to alpha proton of (R/S) – Mandelic acid; (a-d) with 1:1:1, 1:2:2, 1:3:3 and 1:4:4 equivalents of (R/S) – Mandelic acid and (R)-NOBIN p-TsOH in CDCl₃

S40: The experimentally determined and laboratory prepared scalemic ratios of (R/S) – Mandelic acid and (R)-NOBIN in presence of P-TsOH. Alpha proton was chossen for *ee* measurements.

S41: 400 MHz ¹H-NMR spectra of selected regions of different scalemic ratios of *R*–Mandelic acid and (*S*)-Mandelic acid in presence of (*R*)-NOBIN in presence of p-TsOH in CDCl₃

S42: 400 MHz ¹H-NMR spectrum of (R/S)-Mandelic acid, (R)-NOBIN and Methyl p-Toluenesulfonate in CDCl₃

S43: (*R/S*) - 2-Chloro propanoic acid, (*R*)-NOBIN and p-TsOH ternary ion structure with lables

S44: 400 MHz ¹H-NMR spectrum of (R/S)-2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃ with assignments made by TOCSY, COSY and ¹H and ¹³C HSQC

S45: 400 MHz TOCSY spectrum of (R/S)-2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃

S46: 400 MHz COSY spectrum of (R/S)-2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃

S47: 400 MHz ¹H and ¹³C HSQC spectrum of (R/S)-2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃

S48: 400 MHz¹H-NMR spectra of (R) -Mandelic acid and P-Toluene sulphonic acid in presence of A) (R)-NOBIN and B) (S)-NOBIN

S49: 400 MHz ¹H-NMR spectra of (*S*) -Mandelic acid and P-Toluene sulphonic acid in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S50: 400 MHz ¹H-NMR spectra of (*L*) -Phenyl lactic acid and P-Toluene sulphonic acid in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S51: 400 MHz ¹H-NMR spectra of (*2S*)-4-(1,3-Dioxoisoindolin-2-yl)-2-hydroxybutanoic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S52: 400 MHz ¹H-NMR spectra of (*R*)-4-Chloromandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S53: 400 MHz ¹H-NMR spectra of (*L*) -Lactic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S54: 400 MHz ¹H-NMR spectra of (*S*) -2-Hydroxy-3-methyl butyric acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S55: 400 MHz ¹H-NMR spectra of (*S*) -2-Hydroxy-3, 3-dimethyl butyric acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S56: 400 MHz ¹H-NMR spectra of (*R*) -2-Chloro mandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S57: 400 MHz ¹H-NMR spectra of (*R*)-Hexahydromandelic acid and p-TsOH in presence of A)

(*R*)-NOBIN and B) (*S*)-NOBIN

S58: Molecular structures with $\Delta \delta^{R,S}$ values for alpha proton

S59: UV-Vis Spectra

S60: Fluorescence Spectra

S61: IR Spectra

S62: PXRD patterns

S63: Coordinates for (*R*)-NOBIN/ (*R*)-Mandelic acid/ p-TsOH complex (Gaussian 09)

S64: Coordinates for (*S*)-NOBIN/ (*R*)-Mandelic acid/ p-TsOH complex (Gaussian 09)

S65: Coordinates for (*R*)-NOBIN/ (*S*)-Mandelic acid/ p-TsOH complex (Gaussian 09)

S66: Coordinates for (S)-NOBIN/ (S)-Mandelic acid/ p-TsOH complex (Gaussian 09)

S67: Comparison of the present protocol with other protocols reported in the literature

S68: Reference

Experimental Details

The commercially available (R) - 2'-amino-[1, 1'-binaphthalen]-2-ol ((R)-NOBIN), the molecules 1-18, and chloroform-d were purchased and used as received. The ¹H, ¹³C, TOCSY, COSY and HSQC NMR spectra were recorded on 400 MHz spectrometer and referenced with respect to TMS.

Parameters	TOCSY	COSY	HSQC
Pulseprog	mlevph	cosygpqf	hsqcetgp
Time domain	2048	1024	1024 (F2),
points(TD)	(F2),	(F2),	256 (F1)
	416 (F1)	256 (F1)	
Number of scans	16	16	16
(NS)			
Number of	16	16	16
dummy scans			
(DS)			
FnMODE	States-	QF	Echo-
	TPPI		Antiecho
Mixing time	60ms		

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid and (*R*)-NOBIN in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Phenol in CDCl₃

S4

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Benzoic acid in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Trifluoro acetic acid in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (R/S)-3, 4-(Methylenedioxy) mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (R/S)-4-(Trifluoromethyl)mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S9

376 MHz ¹⁹F-NMR spectrum of (R/S)-4-(Trifluoromethyl)mandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S10

400 MHz ¹H-NMR spectrum of (R/S)-4-Bromomandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

S11

400 MHz ¹H-NMR spectrum of (R/S) -4-Chloromandelic acid, (R)-NOBIN and p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (R/S)-2-Hydroxy-3-methyl butyric acid, (R)-NOBIN and p-TsOH in CDCl₃

S13

S14

S15

S16

400 MHz ¹H-NMR spectrum of (*R/S*)-4-Phenyl-2-oxazolidinone, (*R*)-NOBIN and p-TsOH in CDCl₃

S17

400 MHz ¹H-NMR spectrum of (*R/S*)-4-Phenyloxazolidine-2-thione, (*R*)-NOBIN and p-TsOH in CDCl₃

S18

376 MHz ¹⁹F-NMR spectrum of (R/S)- α -Methoxy- α -(trifluoromethyl) phenylacetic acid, (R)-NOBIN and p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*)-2-Methoxy-2-phenylacetic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

S20

400 MHz ¹H-NMR spectrum of (*R/S*)-2-Chloro propanoic acid and (*R*)-NOBIN in CDCl₃

S21

400 MHz ¹H-NMR spectrum of (*R/S*)-2-Chloro propionic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*) -Methylsuccinic acid, (*R*)-NOBIN and p-TsOH in CDCl₃

161.9 MHz ³¹P-NMR spectrum of (R/S) -1, 1'-Binaphthyl-2, 2'-diyl hydrogenphosphate, (R)-NOBIN and p-TsOH in CDCl₃

S24

400 MHz ¹H-NMR spectrum of (R/S)-Methyl 2, 3 dihydroxy 3-phenyl propionate, (R)-NOBIN and p-TsOH in CDCl₃

S25

400 MHz ¹H-NMR spectrum of (*R/S*)-Methyl mandelate and (*R*)-NOBIN in CDCl₃

S26

400 MHz ¹H-NMR spectrum of (*R/S*) -Methyl mandelate, (*R*)-NOBIN and p-TsOH in CDCl₃

S27

S28

S29

400 MHz ¹H-NMR spectrum of (R/S)-N-Methyl-1-(1-naphthyl) ethylamine, (R)-NOBIN in CDCl₃

S31

S32

S33

Stack plot of ¹H-NMR spectrum of (*R*)-NOBIN (a), 2-Chloro propionic acid and (*R*)-NOBIN (b), 2-Chloro propionic acid, (*R*)-NOBIN and different equivalents of p-TsOH (c, d, e) in CDCl₃ showing the deshielding of OH-group of (*R*)-NOBIN with dashed lines.

S34

Chemical shift difference for the selected proton of (R/S)-Mandelic acid in presence of (R)-NOBIN and p-TsOH in different solvents

S.N	Solvent	$\Delta \delta R/S$
0		(ppm)
1	CDC13	0.21
2	C6D6	0.19
3	TOLUENE-d8	0.21
4	CD2Cl2	0.13

400 MHz ¹H-NMR spectrum of (R/S) -Mandelic acid, (R)-NOBIN and p-TsOH in C₆D₆

S36

400 MHz ¹H-NMR spectrum of (R/S) -Mandelic acid, (R)-NOBIN and p-TsOH in in toluene-d₈ (C_7D_8)

S37

400 MHz ¹H-NMR spectrum of (R/S) -Mandelic acid, (R)-NOBIN and p-TsOH in methylenechloride-d₂ (CD₂Cl₂)

400 MHz ¹H-NMR spectrum pertaining to alpha proton of (R/S) – Mandelic acid; (a-d) with 1:1:1, 1:2:2, 1:3:3 and 1:4:4 equivalents of (R/S) – Mandelic acid and (R)-NOBIN, p-TsOH in CDCl₃

S39

The experimentally determined and laboratory prepared scalemic ratios of (R/S) – Mandelic acid and (R)-NOBIN in presence of p-TsOH. Alpha proton was chossen for *ee* measurements.

Entry	Integration $I_R:I_S$	Gravimetrically prepared excess of <i>R</i> enantiomer	ee% = $\frac{I_R - I_s}{I_R + I_s} \times 100$ Experimentally measured enantiomeric excess
1	1.000:0.8172	10	10.06
2	1.000:0.3275	50	50.6
3	1.000:0.1758	70	70.097
4	1.000:0.1017	80	80.6
5	1.000:0.0512	90	89.17
6	1.000:3.0280	-50	-50.3
7	1.000:8.683	-80	-79.4

400 MHz 1 H-NMR spectra of selected regions of different scalemic ratios of *R*–Mandelic acid and (*S*)-Mandelic acid in presence of (*R*)-NOBIN in presence of p-TsOH in CDCl₃

400 MHz ¹H-NMR spectrum of (*R/S*)-Mandelic acid, (*R*)-NOBIN and Methyl p-Toluenesulfonate in CDCl₃

(R/S) - 2-Chloro propanoic acid, (R)-NOBIN and p-TsOH ternary ion structure with lables

400 MHz ¹H-NMR spectrum of (R/S) - 2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃ with assignments made by TOCSY, COSY and ¹H and ¹³C HSQC

400 MHz TOCSY spectrum of (*R/S*) - 2-Chloro propanoic acid, (*R*)-NOBIN and p-TsOH (1:1:1) in CDCl₃

S45

400 MHz COSY spectrum of (*R/S*)-2-Chloro propanoic acid, (*R*)-NOBIN and p-TsOH (1:1:1) in CDCl₃

S46

400 MHz ¹H and ¹³C HSQC spectrum of (R/S)-2-Chloro propanoic acid, (R)-NOBIN and p-TsOH (1:1:1) in CDCl₃

400 MHz ¹H-NMR spectra of (*R*) -Mandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

400 MHz ¹H-NMR spectra of (*S*) -Mandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S49

400 MHz ¹H-NMR spectra of (L) -Phenyl lactic acid and p-TsOH in presence of A) (R)-NOBIN

S51

400 MHz ¹H-NMR spectra of (*R*)-4-Chloromandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S52

400 MHz ¹H-NMR spectra of (*L*) -Lactic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S53

400 MHz ¹H-NMR spectra of (*S*)-2-Hydroxy-3-methyl butyric acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

400 MHz ¹H-NMR spectra of (S) -2-Hydroxy-3, 3-dimethyl butyric acid and p-TsOH in presence of A) (R)-NOBIN and B) (S)-NOBIN

400 MHz ¹H-NMR spectra of (*R*) -2-Chloro mandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S56

400 MHz ¹H-NMR spectra of (*R*)-Hexahydromandelic acid and p-TsOH in presence of A) (*R*)-NOBIN and B) (*S*)-NOBIN

S57

S58

S59

Fluorescence Spectra (CHCl₃ solvent)

S60

S61

С	3.07936700	0.32144300	-0.94904300
С	2.77486100	1.14613300	-2.08281800
С	3.58437600	2.27713300	-2.36265400
С	4.64834400	2.60719200	-1.55527600
С	4.93690100	1.81284300	-0.42240800
С	4.17527800	0.70271600	-0.12530400
С	2.25737100	-0.82170600	-0.67414900
Н	3.33837300	2.88907400	-3.22643000
Н	5.25502800	3.47989700	-1.77503800
Н	5.76726400	2.08152400	0.22437500
Н	4.41170100	0.10747300	0.74979200
С	1.64998400	0.82083500	-2.88862800
С	0.85829500	-0.26165600	-2.60396700
С	1.16434000	-1.09545500	-1.49383800
С	2.51275100	-1.72059300	0.49152400
Н	1.41893400	1.45229800	-3.74259200
Н	-0.00989800	-0.49981700	-3.20971200
0	0.41162300	-2.18119700	-1.20774000
С	3.66581400	-2.57866800	0.54221800
С	3.88191100	-3.42179300	1.68227900

С	2.93543000	-3.41821300	2.73852800
С	1.81905200	-2.62365700	2.66946900
С	1.62479400	-1.78472300	1.55111800
С	4.60326400	-2.64000100	-0.52533900
С	5.70059800	-3.46835600	-0.45844400
С	5.92316800	-4.28074500	0.67829900
С	5.02962400	-4.25824500	1.72310300
Н	3.09794400	-4.06079200	3.59865200
Н	1.08190400	-2.63668000	3.46792000
N	0.38888100	-0.99148400	1.53398300
Н	4.43797500	-2.02622700	-1.40246300
Н	6.40067100	-3.50188000	-1.28774000
Н	6.79488800	-4.92688100	0.71841300
Н	5.18306400	-4.88749200	2.59566300
Н	-0.51123600	-2.06406800	-1.54290600
Η	-0.45823900	-1.52166100	1.13467300
Н	0.11988700	-0.72810100	2.48359100
S	-2.68450300	-1.29001100	-0.23599100
0	-2.76369800	0.16121000	0.13605000
0	-1.93871200	-2.07399400	0.81037000
0	-2.15967800	-1.53319800	-1.61344500
С	-4.73400500	-2.92859100	-1.07291800
С	-4.36833400	-1.88918300	-0.21845600
С	-5.29004800	-1.33842400	0.67295400
С	-6.58778800	-1.84224700	0.70610200
С	-6.98282300	-2.88829600	-0.14038100
С	-6.03693600	-3.42088200	-1.02630500
Н	-4.00814400	-3.33196200	-1.76991100
Н	-4.99329700	-0.51796700	1.31670900
---	-------------	-------------	-------------
Н	-7.30816400	-1.41299600	1.39763700
С	-8.40211200	-3.40277200	-0.12021700
Н	-6.32436500	-4.22972700	-1.69283800
Н	-9.04942900	-2.79575900	-0.76532100
Н	-8.82620400	-3.36838700	0.88779000
Н	-8.45952000	-4.43430700	-0.47878200
С	-0.57078700	4.92001800	0.38364700
С	-0.09609600	5.51479000	1.55539000
С	-0.85882500	6.48176400	2.21254500
С	-2.10129300	6.86156700	1.70460700
С	-2.57710700	6.27141800	0.53149100
С	-1.81562200	5.30690900	-0.12688700
С	0.26817700	3.85478200	-0.32738900
Η	0.88056600	5.22720800	1.92777200
Н	-0.47837500	6.94141900	3.12055800
Н	-2.69331000	7.61606100	2.21471000
Н	-3.54104300	6.56512000	0.12578700
Н	-2.19153200	4.84484300	-1.03472000
С	-0.30986100	2.45827400	-0.05949800
Н	0.19301100	4.01762900	-1.41255600
0	1.61652400	3.89223000	0.06947800
0	-1.46726900	2.24724100	-0.62525100
0	0.32021500	1.65839000	0.63616700
Н	1.80335200	3.02737300	0.47167100
Н	-1.88932300	1.36274000	-0.36501700
Н	0.46298500	-0.09451400	1.00711500

С	-3.05683500	-0.45635100	-0.37463200
С	-3.20278200	0.79354100	-1.06261100
С	-4.41615700	1.51979400	-0.94283600
С	-5.44903300	1.05489000	-0.16012500
С	-5.29872600	-0.16265300	0.54237500
С	-4.13728100	-0.89749800	0.44000900
С	-1.82988100	-1.18754800	-0.50721100
Н	-4.50657100	2.46176700	-1.47606200
Н	-6.37168800	1.62062200	-0.07415200
Н	-6.10742400	-0.52316600	1.17171900
Н	-4.04154900	-1.82787300	0.98869200
С	-2.11610100	1.28887300	-1.83413400
С	-0.94248100	0.58870400	-1.94021500
С	-0.79543200	-0.66174100	-1.28025100
С	-1.60072300	-2.48409400	0.19786500
Н	-2.22460000	2.24742400	-2.33350500
Н	-0.10788400	0.97323900	-2.51782100
0	0.34301800	-1.38137300	-1.38469500
С	-2.31001300	-3.68177000	-0.16182200
С	-2.06594400	-4.89990200	0.55521400
С	-1 10285200	-4 91322700	1 59680100

С	-0.40309200	-3.77602100	1.91273500
С	-0.66494700	-2.57919400	1.21248000
С	-3.24365100	-3.70828900	-1.23400300
С	-3.91350400	-4.86543600	-1.56158300
С	-3.68782000	-6.05942300	-0.83686200
С	-2.78065600	-6.07414500	0.19644100
Н	-0.91633600	-5.83807700	2.13441600
Н	0.35176900	-3.78972900	2.69428400
N	0.14632200	-1.41236400	1.57781300
Н	-3.41781600	-2.80022400	-1.79865200
Н	-4.61893600	-4.86361800	-2.38702000
Н	-4.22573100	-6.96379000	-1.10479500
Н	-2.58991700	-6.98854100	0.75172500
Н	1.12473000	-0.80014800	-1.55775600
Н	0.30904400	-1.38294200	2.58582000
Н	1.12659700	-1.41352800	1.11845100
S	3.10581800	-0.01563000	0.06645700
0	2.93872300	1.15831900	0.98231400
0	2.50749200	0.18413400	-1.28727700
0	2.64221600	-1.29206300	0.71999200
С	5.34987800	-0.68153700	-1.38553300
С	4.86793200	-0.19776200	-0.17012600
С	5.74156300	0.11298400	0.87298200
С	7.10952100	-0.07268900	0.69157500
С	7.62161800	-0.56696100	-0.51696000
С	6.72223800	-0.86120900	-1.55010600
Н	4.65669800	-0.89443600	-2.19141900
Н	5.35162000	0.51368900	1.80196200

Н	7.79280800	0.17702800	1.49912400
С	9.10420100	-0.79275900	-0.69125100
Н	7.10070000	-1.23039900	-2.49961300
Н	9.39839000	-1.77901100	-0.31122700
Н	9.68976900	-0.04738400	-0.14484700
Н	9.39538400	-0.74908000	-1.74447700
С	-1.44935500	4.46531700	0.62778200
С	-0.45300600	5.13933600	-0.09133800
С	-0.78614700	5.90259900	-1.20989500
С	-2.11689000	6.00968500	-1.61989300
С	-3.11209200	5.34900000	-0.89945100
С	-2.78071000	4.58072600	0.21906100
С	-1.11221700	3.64458200	1.88247200
Н	0.58344300	5.05846900	0.21834200
Η	-0.00347300	6.41698300	-1.76027700
Η	-2.37492400	6.60890000	-2.48842300
Η	-4.15234800	5.43742700	-1.20154100
Н	-3.54749800	4.07279800	0.79171000
С	-0.13971700	2.49825700	1.56797400
Н	-0.60007100	4.30316100	2.59687000
0	-2.25309700	3.11613800	2.51510500
0	1.07356800	2.89657500	1.28709700
0	-0.52902600	1.33150700	1.61201200
Н	-2.30066700	2.18701800	2.23253600
Н	1.71952000	2.13790200	1.09725700
Н	-0.28697100	-0.50222700	1.3347420

76

Coordinates for (*R*)-NOBIN/ (*S*)-mandelic acid/ p-TsOH complex (Gaussian 09)

С	3.05761000	0.44818200	0.37504200
С	3.19969100	-0.80205900	1.06318600
С	4.41088600	-1.53197900	0.94364900
С	5.44522000	-1.07034800	0.16092700
С	5.29864000	0.14750600	-0.54181800
С	4.13943200	0.88590100	-0.43962400
С	1.83293300	1.18319300	0.50748800
Н	4.49842000	-2.47414000	1.47702900
Н	6.36615900	-1.63889200	0.07511500
Н	6.10845600	0.50544300	-1.17119300
Н	4.04655700	1.81648900	-0.98843400
С	2.11142200	-1.29399800	1.83462900
С	0.93992200	-0.59023100	1.94048400
С	0.79679200	0.66062100	1.28044400
С	1.60802600	2.48056000	-0.19744500
Н	2.21693600	-2.25284800	2.33407400
Н	0.10408800	-0.97216500	2.51802900
0	-0.33943000	1.38382100	1.38481600
С	2.32118300	3.67587100	0.16246900
С	2.08107700	4.89490200	-0.55438900

С	1.11806800	4.91151300	-1.59600300
С	0.41467900	3.77661800	-1.91219400
С	0.67266500	2.57883600	-1.21213600
С	3.25490800	3.69919900	1.23464400
С	3.92852800	4.85411600	1.56238900
С	3.70671600	6.04893800	0.83786100
С	2.79959600	6.06675900	-0.19543700
Н	0.93453000	5.83706000	-2.13344300
Н	-0.34010500	3.79288600	-2.69376400
N	-0.14228800	1.41465500	-1.57776600
Н	3.42616800	2.79049000	1.79914300
Н	4.63397200	4.84986600	2.38780600
Н	4.24756800	6.95151200	1.10591600
Н	2.61182400	6.98184900	-0.75058900
Н	-1.12292200	0.80507700	1.55803700
Н	0.28818500	0.50308300	-1.33497700
Н	-1.12253500	1.41881100	-1.11839200
S	-3.10567300	0.02631400	-0.06705400
0	-2.50875200	-0.17530500	1.28699700
0	-2.94085200	-1.14778800	-0.98317900
0	-2.63850500	1.30178800	-0.71989300
С	-5.34870800	0.70343300	1.38125500
С	-4.86754600	0.21160400	0.16865500
С	-5.74090900	-0.09603800	-0.87550100
С	-7.10814500	0.09816600	-0.69713400
С	-7.61992600	0.59351500	0.51096200
С	-6.72019600	0.89157500	1.54279300
Н	-4.65496800	0.92280500	2.18493300

Η	-5.35086300	-0.49388400	-1.80566400
Н	-7.79079000	-0.14201200	-1.50813000
С	-9.10693100	0.76967100	0.70413300
Н	-7.09765300	1.27389700	2.48751900
Н	-9.32556500	1.53896900	1.45011400
Н	-9.57200000	-0.16200600	1.04956300
Н	-9.60117900	1.05115800	-0.23044500
С	1.43686900	-4.46821300	-0.62801100
С	0.43819300	-5.13980900	0.09016500
С	0.76852300	-5.90473300	1.20840600
С	2.09874200	-6.01593500	1.61903900
С	3.09622100	-5.35766600	0.89955500
С	2.76765800	-4.58772600	-0.21865800
С	1.10271800	-3.64581400	-1.88240200
Н	-0.59784800	-5.05571900	-0.22001700
Н	-0.01591900	-6.41718400	1.75807400
Н	2.35456200	-6.61645300	2.48732200
Н	4.13606000	-5.44928900	1.20212100
Н	3.53620400	-4.08163300	-0.79056600
С	0.13356600	-2.49665900	-1.56784700
Н	0.58869500	-4.30250300	-2.59722300
0	2.24547100	-3.12066500	-2.51437800
0	-1.08080100	-2.89143900	-1.28673300
0	0.52620400	-1.33101500	-1.61220700
Н	2.29505800	-2.19141500	-2.23256700
Η	-1.72465300	-2.13088400	-1.09723300
Η	-0.30508900	1.38604500	-2.58578000

Coordinates for (S)-NOBIN/ (S)-mandelic acid/ p-TsOH complex (Gaussian 09)

С	-3.42810000	-0.48434800	1.53720500
С	-3.78275600	0.70441500	2.25801000
С	-4.34690700	0.59545600	3.55581400
С	-4.54533800	-0.63289800	4.14286000
С	-4.17690200	-1.80667300	3.44624300
С	-3.63441900	-1.73645200	2.18185200
С	-2.85589400	-0.37067700	0.22429900
Н	-4.61339500	1.50835000	4.08236800
Н	-4.97430200	-0.70398600	5.13765500
Н	-4.31965800	-2.77626400	3.91448600
Н	-3.35456200	-2.64853800	1.66747800
С	-3.54357200	1.96959200	1.65967500
С	-2.97201200	2.06783200	0.41791900
С	-2.62332200	0.89603800	-0.30314800
С	-2.47675200	-1.58304100	-0.56766900
Н	-3.81203200	2.86828600	2.20862800
Н	-2.76993700	3.03357600	-0.03374000
0	-2.04151400	0.98600300	-1.52933200
С	-3.47188100	-2.48696800	-1.07611400
С	-3.06619400	-3.66847000	-1.78243500

С	-1.68519000	-3.91670800	-1.99022200
С	-0.74098200	-3.02692600	-1.54210000
С	-1.15077100	-1.87100300	-0.84348200
С	-4.86476800	-2.24032700	-0.92474400
С	-5.79944200	-3.11886900	-1.42357600
С	-5.39555000	-4.29462400	-2.09957400
С	-4.05794100	-4.55896700	-2.27571300
Н	-1.38295300	-4.81328500	-2.52334300
Н	0.31850300	-3.19279700	-1.71242100
Ν	-0.09495500	-0.95008100	-0.42714200
Н	-5.18483200	-1.34007400	-0.41387900
Н	-6.85728000	-2.90676900	-1.30034100
Н	-6.14400000	-4.98097800	-2.48410200
Н	-3.73572900	-5.45247500	-2.80359400
Н	-1.63657600	1.87107600	-1.64866600
Н	-0.32122800	0.03487200	-0.63089600
Н	0.17594000	-1.00022800	0.56745700
S	3.08139100	-0.76332100	0.12936400
0	2.15900200	-0.93130000	1.28476900
0	3.66623100	0.61304800	0.00188600
0	2.45911500	-1.22855100	-1.16633200
С	4.76367000	-2.27515900	1.70926000
С	4.47819400	-1.84807100	0.41399100
С	5.28564500	-2.23332200	-0.65767100
С	6.38851500	-3.04921300	-0.42081000
С	6.70398400	-3.48610800	0.87449600
С	5.87278500	-3.09131100	1.93015200
Н	4.11200600	-1.97871600	2.52358000

Н	5.03836700	-1.91007800	-1.66298500
Н	7.01411000	-3.35642600	-1.25518100
С	7.92190500	-4.34346600	1.12382400
Н	6.09319000	-3.42998200	2.93927300
Н	7.81773600	-4.93112000	2.04038400
Н	8.82259400	-3.72629700	1.23199700
Н	8.10214500	-5.03511200	0.29511900
С	0.71644500	5.06945100	-0.89857300
С	1.46747400	6.15799300	-1.35167600
С	1.59043900	7.30535100	-0.56616500
С	0.95978400	7.37139200	0.67631000
С	0.20876100	6.28558800	1.13447000
С	0.08762000	5.13855100	0.35304200
С	0.56781600	3.82192100	-1.75005400
Η	1.96152100	6.10558300	-2.31829400
Н	2.17705800	8.14543400	-0.92579400
Н	1.05488800	8.26373000	1.28788200
Н	-0.27630300	6.33074400	2.10507500
Н	-0.48192700	4.28587200	0.71043900
С	1.19053200	2.60443200	-1.05416200
Н	1.09351100	3.96228200	-2.70255800
0	-0.81000100	3.49736000	-1.98533600
0	2.49380700	2.58825100	-1.16890000
0	0.50415900	1.78857500	-0.45447100
Н	-1.24930300	4.29232700	-2.31441100
Н	2.90270300	1.78492900	-0.68341800
Н	0.83653400	-1.13376900	-0.90550800

82

COOH	1) +0.24	1) Present method
		2) Freire, F.; Quiñoá, E.; Riguera, R.
OH	2) - 0.07	Chem. Commun. (Camb). 2008, 35,
	,	4147
	2) 0.01	2) Chaudhari S. D. Surranrakash N
	3) -0.01	3) Chaudhari, S. K.; Suryaprakash, N.
		New J. Chem.2013, 37, 4025
Ph_COOH	1) -0.12	1) Present method
ÖH		2) Chaudhari, S. R.; Suryaprakash, N.
	2) +0.03	New J. Chem.2013, 37, 4025.
PhCOOH	1) +0.14	1) Present method
		2) Chaudhari, S. R.; Suryaprakash, N.
ОН	2) -0.03	New I Chem 2013 37 4025
	_) 0.00	3) Freire \mathbf{F} : Quiñoá \mathbf{F} : Riquera R
	2) 0.04	$(C_1, C_2, C_3, C_4, C_5, C_6, C_6, C_6, C_7, C_7, C_7, C_7, C_7, C_7, C_7, C_7$
	3) -0.04	Chem. Commun. (Camb). 2008, 35,
		4147.
ОН	1) 0.24	1) Present method
F ₃ C		2) Chaudhari, S. R.; Suryaprakash, N.
	2) 0.1	New J. Chem.2013, 37, 4025
CI	1) -0.13	1) Present method
Соон		2) Chaudhari S R Survaprakash N
Ṓн		_, _, _, _, ~, ~, _, _, _, _, _, _, _, _, _, _, _, _, _,

	2) +0.05	New J. Chem.2013, 37, 4025
СООН	1) +0.1	1) Present method
		2) Chaudhari, S. R.; Suryaprakash, N.
OH	2) - 0.03	New J. Chem.2013, 37, 4025
		3) Freire, F.; Quiñoá, E.; Riguera, R.
	3) -0.12	Chem. Commun. (Camb). 2008, 35,
		4147.
НОСООН	1) 0.19	1) Present method
НН		2) Freire, F.; Quiñoá, E.; Riguera, R.
	2) 0.08	Chem. Commun. (Camb). 2008, 35,
		4147.
Ph	1) +0.18	1) Present method
ОН		2) Chaudhari, S. R.; Suryaprakash, N.
	2) -0.02	New J. Chem.2013, 37, 4025
О СООН	1) +0.09	1)Present method
		2) Chaudhari, S. R.; Suryaprakash, N.
	2) -0.02	New J. Chem.2013, 37, 4025.
	1) +0.1	1) Present method
Соон	2) -0.03	2) Chaudhari, S. R.; Suryaprakash, N. New J. Chem.2013, 37, 4025

Reference

- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
- Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Menucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
- Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
- Kitao, H.Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
- Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
- Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
- Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.
- E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
- Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
- Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.