Supporting Information

Synthesis and structural characterization of titanium and zirconium complexes containing half-salen ligands as catalysts for polymerization reactions

Mrinmay Mandal,^a Uwe Monkowius^b and Debashis Chakraborty*c

^aDepartment of Chemistry, Indian Institute of Technology Patna, Bihta 801103, Bihar, India.

^bInstitute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger str. 69, 4040 Linz, Austria.

^cDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India. Fax: +044-22574202; Tel: +044-22574223; E-mail: dchakraborty@iitm.ac.in, debashis.iitp@gmail.com.

Fig. S1 ¹H NMR (400 MHz, CDCl₃) of Compound 1

Fig. S2 ¹³C NMR (100 MHz, CDCl₃) of Compound 1

Fig. S3 ESI-Mass Spectrum of Compound 1

Fig. S4 ¹H NMR (400 MHz, CDCl₃) of Compound 2

Fig. S5 ¹³C NMR (100 MHz, CDCl₃) of Compound 2

Fig. S6 ESI-Mass Spectrum of Compound 2

Fig. S7 ¹H NMR (400 MHz, CDCl₃) of Compound 3

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) of Compound 3

Fig. S9 ESI-Mass Spectrum of Compound 3

Fig. S10 ¹H NMR (400 MHz, CDCl₃) of Compound 4

Fig. S11 ¹³C NMR (100 MHz, CDCl₃) of Compound 4

Fig. S12 ESI-Mass Spectrum of Compound 4

Fig. S13 ¹H NMR (400 MHz, CDCl₃) of Compound 5

Fig. S14 ¹³C NMR (100 MHz, CDCl₃) of Compound 5

Fig. S15 ESI-Mass Spectrum of Compound 5

Fig. S16 ¹H NMR (400 MHz, CDCl₃) of Compound 6

Fig. S17 ¹³C NMR (100 MHz, CDCl₃) of Compound 6

Fig. S18 ESI-Mass Spectrum of Compound 6

Fig. S19 ¹H NMR (400 MHz, CDCl₃) of Compound 7

Fig. S20 ¹³C NMR (100 MHz, CDCl₃) of Compound 7

Fig. S21 ESI-Mass Spectrum of Compound 7

Fig. S22 Central part of the molecular structure of 5.

Fig. S23 Coordination polyhedron of a distorted square antiprism geometry.

Fig. S24 Representative GPC traces for the polymerization of *rac*-LA: (a) entry 6, Table 1; (b) entry 1, Table 1.

Fig. S25 Representative GPC traces for the polymerization of *L*-LA: (a) entry 13, Table 1; (b) entry 10, Table 1.

Fig. S26 Representative GPC traces for the polymerization of ε -CL: (a) entry 20, Table 1; (b) entry 17, Table 1.

Fig. S27 Plot of M_n and M_w/M_n vs. % conversion for *L*-LA, *rac*-LA and ε -CL polymerization using **4** at 140 °C.

Fig. S28 Homonuclear decoupled ¹H NMR spectra of PLA from *rac*-LA using 4 in CDCl₃. $P_r = 2 \cdot I_1/(I_1+I_2)$, with $I_1 = 5.19-5.23$ ppm (*rmr*, *mmr/rrm*), $I_2 = 5.13-5.19$ ppm (*rrm/mmr*, *mmm*, *mrm*). $P_r = 2*1/(1+1.63) = 2/2.63 = 0.76$.

Fig. S29 ¹³C NMR spectrum of heterotactic PLA synthesized using complex **4**, (1) carbonyl region (left), (2) methine region (right).

Fig. S30 ¹³C NMR spectrum of heterotactic PLA synthesized using complex **1**, (1) carbonyl region (left), (2) methine region (right).

Fig. S31 Plot of % conversion vs. time for L-LA, rac-LA and ε -CL polymerization using 4 at 140 °C.

Fig. S32 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **4** in 15: 1 ratio.

Fig. S33 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **4** in 10: 1 ratio.

Fig. S34 MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **1** in the presence of BnOH in 15: 1: 2 ratio.

Fig. S35 ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **1** in the presence of BnOH in 15: 1: 2 ratio.

Fig. S36 MALDI-TOF of the crude product obtained from a reaction between ε -CL and **1** in 15: 1 ratio.

Fig. S37 ¹H NMR spectrum of the crude product obtained from a reaction between ε -CL and **1** in 15: 1 ratio.

Fig. S38 MALDI-TOF of the crude product obtained from a reaction between ε -CL and **4** in 15: 1 ratio.

Fig. S39 ¹H NMR spectrum of the crude product obtained from a reaction between ε -CL and **4** in 15: 1 ratio.

Fig. S40 MALDI-TOF of the crude product obtained from a reaction between ε -CL and **1** in the presence of BnOH in 15: 1: 2 ratio.

Fig. S41 ¹H NMR spectrum of the crude product obtained from a reaction between ε -CL and **1** in the presence of BnOH in 15: 1: 2 ratio.

Fig. 42 Representative GPC traces for the copolymerization of CHO with CO₂: (a) entry 4, Table 3; (b) entry 1, Table 3.

Fig. S43 MALDI-TOF mass spectrum of PCHC sample produced by **4** at 50 $^{\circ}$ C and 35 bar CO₂ pressure from CHO and CO₂ using TBAB as cocatalyst.

Fig. S44 ¹³C NMR spectrum of poly(cyclohexene carbonate) in the carbonate region produced from cyclohexene oxide and CO₂.

Fig. S45 Representative TGA trace and derivative plot of PCHC produced by **4** (Table 3, entry 4).

Fig. S46 Representative DSC trace of PCHC produced by 2, 2nd heat cycle (Table 3, entry 4).

Fig. S47 13 C NMR spectrum of an aliquot from the reaction mixture of PO/CO₂ in CDCl₃.

Fig. S48 ¹³C NMR spectrum of an aliquot from the reaction mixture of SO/CO₂ in CDCl₃.

Fig. S49 Representative GPC traces for the homopolymerization of CHO: (a) entry 2, Table 5; (b) entry 4, Table 5.

Fig. S50 ¹H NMR (500 MHz, CDCl₃) spectrum of poly(cyclohexene oxide) (PCHO) using **4** in 1000: 1 ratio.

Fig. S51 Plot of activity vs. [MAO]/[C] ratio for 1, 4 and 5 for ethylene polymerization.

Temperature Effect

Fig. S52 Effect of temperature on the activity for the complexes 1, 4 and 5 towards ethylene polymerization.

Fig. S53 Effect of time on the yield and activity for the complex 4 towards ethylene polymerization.

Compounds	1	3	4	5
Emperical formula	$C_{36}H_{50}N_2O_4Ti$	$C_{26}H_{26}Cl_4N_2O_4Ti$	$C_{42}H_{64}N_2O_7Ti_2$	$C_{72}H_{100}N_4O_8Zr_2$
Formula weight	622.68	620.19	804.75	1332.00
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>I</i> 2/ <i>a</i>	<i>P</i> -1	P2(1)/c	P2(1)/n
Temp/K	296(2)	296(2)	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
<i>a</i> (Å)	14.4864(9)	10.3126(3)	14.9452(5)	20.5673(8)
<i>b</i> (Å)	17.4311(13)	12.8248(5)	18.7424(6)	13.9216(5)
<i>c</i> (Å)	16.5711(16)	12.9776(4)	18.6507(5)	29.0288(10)
α (°)	90	63.2283(19)	90	90
β (°)	104.720(3)	68.1217(13)	107.1600(10)	108.3780(10)
γ (°)	90	66.2981(14)	90	90
$V(Å^3)$	4047.1(6)	1364.07(8)	4991.7(3)	7887.9(5)
Ζ	4	2	4	4
$D_{\rm calc}~({ m g/cm^3})$	1.022	1.510	1.071	1.122
Reflns collected	19126	18344	32072	37053
No. of indepreflns	5037	4790	8217	9605
Absorption correction	multi-scan	none	multi-scan	multi-scan
GOF	1.103	1.032	1.029	1.016

Table S1 Crystal data for the structures of 1, 3, 4 and 5

F(000)	1336	636	1720	2816
Final <i>R</i>	$R_1 = 0.0451,$	$R_1 = 0.0336,$	$R_1 = 0.0459,$	$R_1 = 0.0402,$
indices($I \ge 2\sigma(I)$)	$wR_2 = 0.1357$	$wR_2 = 0.0776$	$wR_2 = 0.1243$	$wR_2 = 0.1089$
<i>R</i> indices (all data)	$R_1 = 0.0626,$	$R_1 = 0.0439,$	$R_1 = 0.0705,$	$R_1 = 0.0542,$
	$wR_2 = 0.1426$	$wR_2 = 0.0831$	$wR_2 = 0.1347$	$wR_2 = 0.1153$
CCDC	1422871	1422870	1422869	1422873

 $\overline{R_{I} = \sum |F_{0}| - |F_{c}| / \sum |F_{0}|, wR_{2} = [\sum (F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2})^{2}]^{1/2}}$

Table S2 Polymerization data for *rac*-LA, *L*-LA and ε -CL using 1–7 in the presence of benzyl alcohol in 200: 1: 2 (monomer: initiator: benzyl alcohol) ratio.

Entry	Catalyst	Monomer	T / °C	Yield	^a Time/	^b TOF/min	^c M _n ^{obs} / kgmol ⁻¹	^d M _n ^{theo} / kgmol ⁻¹	$M_{\rm w}/M_{\rm n}$
1	1	rac-LA	140	96	31	3.1	15.09	14.52	1.12
2	2	rac-LA	140	96	39	2.5	14.90	14.52	1.12
3	3	rac-LA	140	97	27	3.6	15.55	14.52	1.11
4	4	rac-LA	140	99	21	4.7	16.01	14.52	1.10
5	5	rac-LA	140	95	50	1.9	14.02	14.52	1.13
6	6	rac-LA	140	93	58	1.6	13.69	14.52	1.14
7	7	rac-LA	140	95	45	2.1	14.67	14.52	1.13
8	1	L-LA	140	96	26	3.7	14.31	14.52	1.15
9	2	L-LA	140	95	34	2.8	13.52	14.52	1.16
10	3	L-LA	140	96	21	4.6	14.73	14.52	1.13
11	4	L-LA	140	98	16	6.1	15.55	14.52	1.12
12	5	L-LA	140	93	45	2.1	13.02	14.52	1.17
13	6	L-LA	140	92	52	1.8	12.88	14.52	1.16
14	7	L-LA	140	94	39	2.4	13.27	14.52	1.16
15	1	ε-CL	80	97	39	2.5	12.08	11.52	1.20
16	2	ε-CL	80	96	47	2.0	11.72	11.52	1.19
17	3	ε-CL	80	96	32	3.0	12.62	11.52	1.18
18	4	ε-CL	80	98	27	3.6	12.98	11.52	1.17
19	5	ε-CL	80	93	61	1.5	10.68	11.52	1.21
20	6	ε-CL	80	93	72	1.3	10.09	11.52	1.22
21	7	ε-CL	80	95	53	1.8	11.11	11.52	1.21

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Turnover frequency (TOF) = Number of moles of monomer consumed / (mole of catalyst × time of polymerization). ^{*c*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for ε -CL (0.56) and LA (0.58) polymerization. ^{*d*} M_n (theoretical) at 100 % conversion = [M]₀/[C]₀ × mol wt (monomer) + mol wt (BnOH).

Table S3 Polymerization data based on changing ratios in case of *rac*-LA using **1**, **4** and **5** in the presence of benzyl alcohol at 140 $^{\circ}$ C.^{*a*}

Entry	Catalyst (C)	[M]: [C]: [BnOH]	Yield (%)	^b Time/min	^c TOF/min	$^{d}M_{\rm n}^{\rm obs}/$	^e M _n theo/	$M_{\rm w}/M_{\rm n}$
		ratio				kgmol ⁻¹	kgmol ⁻¹	
1	1	100: 1: 2	99	16	3.1	8.904	7.315	1.10
2	1	200: 1: 2	97	27	3.6	15.55	14.52	1.11
3	1	400: 1: 2	96	43	4.5	30.89	28.94	1.12
4	1	600: 1: 2	95	68	4.2	44.44	43.35	1.14
5	1	800: 1: 2	93	97	3.8	59.05	57.76	1.16
6	4	100: 1: 2	98	12	4.1	9.251	7.315	1.09
7	4	200: 1: 2	99	21	4.7	16.01	14.52	1.10
8	4	400: 1: 2	95	34	5.6	31.84	28.94	1.12
9	4	600: 1: 2	94	55	5.1	47.05	43.35	1.14
10	4	800: 1: 2	92	84	4.4	60.06	57.76	1.15
11	5	100: 1: 2	97	28	1.7	8.017	7.315	1.12
12	5	200: 1: 2	95	45	2.1	14.67	14.52	1.13
13	5	400: 1: 2	94	67	2.8	29.92	28.94	1.15
14	5	600: 1: 2	93	99	2.8	44.08	43.35	1.16
15	5	800: 1: 2	91	142	2.6	57.35	57.76	1.18

^{*a*}M = Monomer, C = Catalyst. ^{*b*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*c*}Turnover frequency (TOF) = Number of moles of monomer consumed / (mole of catalyst × time of polymerization). ^{*d*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for *rac*-LA (0.58) polymerization. ^{*e*} M_n (theoretical) at 100 % conversion = [M]₀/[C]₀ × mol wt (monomer) + mol wt (BnOH).

Table S4 DSC and TGA measurements for the different copolymers obtained in Table 3.

Entry	Initiator	Copolymers	$T_{\rm g}{}^a$	T_{d5}^{b}	$T_{d50}{}^b$	T_{d95}^{b}
			(°Č)	(°C)	(°C)	(°C)
1	1	PCHC	50	191	269	579
2	4	PCHC	54	202	277	597
3	5	PCHC	47	175	256	562

 aT_{g} values represent the midpoint temperature during the second heating cycle determined by DSC. $^{b}T_{d5}$, T_{d50} , and T_{d95} are the decomposition temperature at 5%, 50%, and 95% weight loss, respectively determined by TGA analysis.