Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Contents

Supplementary material 1: ¹H NMR & ¹³C NMR spectra Supplementary material 2: ESI-MS Supplementary material 3: Molecular docking Supplementary material 4: % cleavage data Supplementary material 5: Antiproliferative study (IC₅₀) Supplementary material 6: MIC values data Supplementary material 7: Brine shrimp data

Supplementary material 1: ¹H NMR & ¹³C NMR spectra Figure S1: NMR 5'-(*1H*-Imidazol-1-yl)-3'-methyl-1',2-diphenyl-5-(pyridin-2-yl)-3,4-dihydro-*1'H*,2*H*-3,4'-

bipyrazole (bpy-N) [4a]

3'-Methyl-5'-phenoxy-1',2-diphenyl-5-(pyridin-2-yl)-3,4-dihydro-*1'H*,2*H*-3,4'-bipyrazole (bpy-O) [4b] Figure S3: ¹H NMR

Figure S4: APT

4-(5-(*1H*-Imidazol-1-yl)-3-methyl-1-phenyl-*1H*-pyrazol-4-yl)-6-(pyridin-2-yl)pyrimidin-2-amine (pma-N) [5a] Figure S5: ¹H NMR

Figure S6: APT

4-(3-Methyl-5-phenoxy-1-phenyl-*1H*-pyrazol-4-yl)-6-(pyridin-2-yl)pyrimidin-2-amine (pma-O) [5b]

Figure S7: ¹H NMR

Figure S8: APT

7-(5-(*1H*-Imidazol-1-yl)-3-methyl-1-phenyl-*1H*-pyrazol-4-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (tpm-N) [6a] Figure S9:¹H NMR

7-(3-Methyl-5-phenoxy-1-phenyl-*1H*-pyrazol-4-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5a]pyrimidine (tpm-O) [6b] Figure S11:¹H NMR

$[(\eta^5\text{-}C_5\text{Mes})Ir(bpy\text{-}N)Cl]Cl~[7a]$

Figure S13: ¹H NMR

Figure S14: APT

Figure S15: ¹H NMR

 $[(\eta^5-C_5Me_5)Ir(pma-N)Cl]Cl$ [8a]

[(η⁵-C₅Me₅)Ir(pma-O)Cl]Cl [8b]

Figure S19: ¹H NMR

Figure S21: ¹H NMR

$[(\eta^{5}\text{-}C_{5}Me_{5})Ir(tpm\text{-}O)Cl]Cl [9b]$

Figure S23: ¹H NMR

Figure S24: APT

Supplementary material 2: ESI-MS Figure S25: Complex 7a

Supplementary material 3: Molecular docking

Figure S26: 4a

Figure S27: 4b

Figure S28: 5a

Figure S29: 5b

Figure S30: 6b

Figure S31: 7a

Figure S32: 7b

Figure S33: 8a

Supplementary material 4: DI	NA cleave	age activity	data	presented	with	standard	deviation
for three independent experimen	ts.						
Table S34:							

Compounds	SC	L	NC
DNA control	81 ± 1.5	19 ± 1.7	-
Salt	66 ± 1.7	14 ± 1.5	20 ± 1.1
4a	14 ± 2.0	$\textbf{47} \pm 1.0$	39 ± 1.0
4b	21 ± 1.5	$\textbf{49}\pm2.0$	30 ± 1.5
5a	23 ± 1.1	$\textbf{43} \pm 1.1$	34 ± 1.1
5b	25 ± 2.0	$\textbf{40} \pm 1.2$	35 ± 2.0
6а	$\textbf{30} \pm 1.0$	35 ± 1.7	35 ± 2.0
6b	23 ± 1.5	$\textbf{41}\pm1.5$	$\textbf{36} \pm \textbf{1.5}$
7a	10 ± 1.5	32 ± 2.2	58 ± 1.5
7b	19 ± 2.0	$\textbf{29}\pm1.2$	$\textbf{52}\pm1.0$
8a	20 ± 2.0	39 ± 0.9	$\textbf{41}\pm2.0$
8b	20 ± 1.1	25 ± 1.1	55 ± 1.1
9a	21 ± 1.5	28 ± 1.6	51 ± 1.5
9b	30 ± 1.0	31 ± 2.1	38 ± 1.7

Supplementary material 5: Anticancer activity on A549 (lung) cancer cell line, IC₅₀data presented with standard deviation for three independent experiments. **Table S35:**

Compounds	IC50 (µM)
4 a	387 ± 1.20
4 b	220 ± 0.82
5 a	197 ± 2.12
5b	88 ± 0.98
6a	290 ± 3.20
6b	170 ± 1.65
7a	245 ± 4.23
7b	89 ± 0.79
8 a	96 ± 1.72
8b	74 ± 2.78
9a	163 ± 0.43
9b	116 ± 3.49

Supplementary material 6: MIC values of ligands and complexes in μ M presented with standard deviation for three independent experiments. **Table S36:**

Commente	Gram positive (in µM)		Gram negative (in μM)			
Compounds	S.aureus	B.subtilis	S.marcescens	P.aeruginosa	E.coli	
Salt	566 ± 12	572 ± 6	544 ± 8	530 ± 14	504 ± 7	
4a	303 ± 5	301 ± 5	272 ± 7	273 ± 7	297 ± 17	
4b	316 ± 6	317 ± 6	295 ± 5	294 ± 6	303 ± 7	
5a	341 ± 12	337 ± 12	296 ± 6	300 ± 12	318 ± 17	
5b	353 ± 4	353 ± 4	312 ± 8	317 ± 7	338 ± 14	
6a	283 ± 5	280 ± 8	253 ± 4	254 ± 2	264 ± 8	
6b	297 ± 8	292 ± 11	263 ± 5	266 ± 4	277 ± 14	
7a	103 ± 4	105 ± 6	71 ± 7	73 ± 7	104 ± 6	
7b	114 ± 5	117 ± 8	84 ± 5	86 ± 3	115 ± 8	
8a	109 ± 9	111 ± 9	79 ± 3	80 ± 2	110 ± 7	
8b	117 ± 4	120 ± 6	81± 8	83 ± 4	117 ± 4	
9a	93 ± 5	95 ± 5	67 ± 2	67 ± 1	91 ± 3	
9b	97 ± 2	99 ± 4	75 ± 5	76 ± 2	99 ± 4	

Supplementary material 7: Brine shrimp lethality bioassay data presented with standard deviation for three independent experiments. **Table S37:**

Compounds	$LC_{50}(\mu g/mL)$
4 a	7.05 ± 0.074
4b	7.53 ± 0.071
5a	7.80 ± 0.067
5b	8.49 ± 0.065
6a	5.00 ± 0.032
6b	5.34 ± 0.059
7a	6.33 ± 0.099
7b	6.63 ± 0.066
8a	6.12 ± 0.096
8b	7.77 ± 0.101
9a	2.91 ± 0.044
9b	4.83 ± 0.053