Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information for:

Novel Yttrium and Zirconium Catalysts Featuring Reduced Ar-BIANH₂ Ligands for Olefin Hydroamination (Ar-BIANH₂ = bisarylaminoacenaphthylene).

Alessandro Cimino, ^[a,b] Filippo Moscatelli,^[a,b] Francesco Ferretti,^[a] Fabio Ragaini,^[a]* Stéphane Germain,^[b] Jérôme Hannedouche,^[b] Emmanuelle Schulz,^[b]* Lapo Luconi,^[c] Andrea Rossin,^[c] Giuliano Giambastiani^[c,d]*

[a] Dipartimento di Chimica, Università degli Studi di Milano
 via C. Golgi 19, 20133 Milano (Italy)
 E-mail: <u>fabio.ragaini@unimi.it</u>

- [b] Dr S. Germain, Dr. J. Hannedouche, Dr. E. Schulz
 Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Univ Paris-Sud, F-91405, Orsay
 CEDEX, France
 E-mail: emmanuelle.shulz@u-psud.fr
- [c] Institute of Chemistry of Organometallic Compounds ICCOM-CNR and Consorzio INSTM,Via Madonna del Piano 10, 50019 Sesto F.no Florence (Italy)

E-mail: giuliano.giambastiani@iccom.cnr.it

[d] Kazan Federal University

18, Kremlyovskaya street, Kazan 420008, Russian Federation

Contents:

General synthesis and characterization of Ar-BIAN	S1
Crystallographic data	S 3
NMR spectra of Ar-BIANH ₂ and complex 5a	S9
Quantification and characterization of hydroamination products.	S17
NMR spectra of the catalytic reactions	S18

General synthesis of Ar-BIAN. The synthesis was performed as previously reported in the literature. ¹ Acenaphthenequinone (1.00 g, 5.49 mmol) and anhydrous $ZnCl_2$ (2.00 g 14.7 mmol,) were suspended in AcOH (15 mL) in a Schlenk flask under a nitrogen atmosphere. The mixture was heated to 60 °C and the arylamine was added (12.6 mmol). In the case of the 3,5-*bis*(trifluoromethyl)aniline, toluene (4 mL) was also added. The reaction mixture was then refluxed for 45 minutes and the still hot mixture was filtered on a Buchner funnel in the air. The obtained (Ar-BIAN)ZnCl₂ complex was washed with Et₂O and then dried under reduced pressure. Decomplexation of the Ar-BIAN was carried out in the air by suspending the complex in CH₂Cl₂ (100 mL) and stirring the suspension with a saturated aqueous solution of K₂C₂O₄ (25 mL) until the organic phase become clear. The organic phase was separated, washed twice with water (10 mL), dried (Na₂SO₄), filtered and evaporated under vacuum affording the free Ar-BIAN. The color of the compound depends on the electronic nature of the employed arylamine ranging from yellow (electron poor) to red-orange (electron rich). The 2,6-*i*Pr₂C₆H₃-BIAN synthesis was performed without the addiction of ZnCl₂ as previously reported.²

Ph-BIAN: yellow solid, 81% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H, H⁵), 7.48 (t, J = 7.7 Hz, 4H, H¹⁰), 7.37 (t, J = 7.8 Hz, 2H, H⁴), 7.27 (t, J = 7.4 Hz, 2H, H¹¹), 7.14 (d, J = 7.8 Hz, 4H, H⁹), 6.85 ppm (d, J = 7.2 Hz, 2H, H³); ¹³C NMR (75 MHz, CDCl₃) δ 161.9 (C¹), 152.4 (C⁸), 142.4 (C⁷), 131.8 (C⁶), 130.0 (C¹⁰), 129.6 (C⁵), 129.1 (C²), 128.2 (C⁴), 125.0 (C¹¹), 124.6 (C³), 118.8 ppm (C⁹).

4-MeOC₆H₄-BIAN: dark orange solid, 83% yield. ¹H NMR (300 MHz, CDCl₃) 7.86 (d, *J* = 8.2 Hz, 2H, H⁵), 7.37 (t, *J* = 7.8 Hz, 2H, H⁴), 7.09 (d, *J* = 8.8 Hz, 4H, H¹⁰), 7.03 – 6.95 (m, 6H, H³ and H⁹), 3.87 ppm (s, 3H, -OCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 161.7 (C¹), 157.0 (C¹¹), 145.0 (C⁸), 141.8 (C⁷), 131.4 (C⁶), 129.0 (C⁵), 128.8 (C²), 127.7 (C⁴), 123.8 (C³), 119.9 (C⁹), 114.7 (C¹⁰), 55.6 ppm (-OCH₃).

¹M. Gasperini, F. Ragaini, S. Cenini, *Organometallics* **2002**, *21*, 2950-2957.

² R. van Asselt, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, R. Benedix, Recl. Trav. Chim. Pays-Bas 1994, 113, 88-98.

3,5-(CF₃)₂C₆H₃-BIAN: yellow solid, 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 2H, H⁵), 7.85 (s, 2H, H¹¹), 7.69 (s, 4H, H⁹), 7.54 (t, *J* = 7.8 Hz, 2H, H⁴), 6.96 ppm (d, *J* = 7.2 Hz, 2H, H³). ¹³C NMR (75 MHz, CDCl₃) δ 162.8 (*C*), 152.7 (*C*), 142.8 (*C*), 133.5 (q, ²*J*_{CF} = 33.6 Hz, C¹⁰), 132.0 (*C*), 130.8 (C⁵), 128.5 (C⁴), 127.8 (*C*), 124.3 (C³), 123.5 (q, ¹*J*_{CF} = 272.8 Hz, *C*F₃), 119.3 (C⁹), 118.6 ppm (C¹¹). ¹⁹F NMR (282 MHz; CDCl₃) δ -63.44 ppm.

2,4,6-Me₃-C₆H₂BIAN: orange solid, 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H, H⁵), 7.37 (t, *J* = 7.7 Hz, 2H, H⁴), 6.98 (s, 4H, H¹⁰), 6.80 (d, *J* = 7.1 Hz, 2H, H³), 2.37 (s, 6H, *ortho*-*CH*₃), 2.12 (s, 12H *para*-*CH*₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.5 (C¹), 147.2 (C⁸), 141.0 (C⁷), 133.2 (C¹¹), 131.4 (C⁶), 130.1 (C²), 129.4 (C¹⁰), 129.2 (C⁵), 128.6 (C⁴), 125.0 (C⁹), 122.9 (C³), 21.4 (*para*-*C*H₃), 18.1 ppm (*ortho*-*C*H₃).

2,6-*i***Pr₂C₆H₃-BIAN:** yellow solid, 90% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H, H⁵), 7.36 (t, J = 7.8 Hz, 2H, H⁴), 7.29 – 7.15 (m, 6H, H¹⁰ and H¹¹), 6.64 (d, J = 7.2 Hz, 2H, H³), 3.04 (sept, J = 6.8 Hz, 4H, CH(CH₃)₂), 1.24 (d, J = 6.8 Hz, 12H, CH₃), 0.97 (d, J = 6.8 Hz, 12H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.4 (C¹), 147.9 (C⁸), 141.2 (C⁷), 135.8 (C⁹), 131.5 (C⁶), 129.9 (C²), 129.3 (C⁵), 128.3 (C⁴), 124.7 (C¹¹), 123.9 (C¹⁰), 123.7 (C³), 29.0 (CH(CH₃)₂), 23.8 (CH₃), 23.5 ppm (CH₃).

 Table S1. Crystal data and structure refinement for 5a.

Empirical formula	$C_{42} H_{59} N_5 Zr = Zr(L)(NMe_2)_2(NHMe_2)$		
Formula weight	725.16		
Temperature	100(2) K		
Wavelength	1.54180 Å		
Crystal system	Orthorhombic		
Space group	$P 2_1 2_1 2_1$		
Unit cell dimensions	a = 12.478(2) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 14.351(2) Å	$\beta = 90^{\circ}$	
	c = 21.722(3) Å	$\gamma=90^\circ$	
Volume	3890(10) Å ³		
Z	4		
Density (calculated)	1.238 Mg/m ³		
Absorption coefficient	2.569 mm ⁻¹		
F(000)	1544		
Crystal size	0.1 x 0.1 x 0.2 mm ³		
Theta range for data collection	4.07 to 72.39°.		
Index ranges	$-12 \le h \le 15, -17 \le k \le 15, -26 \le l \le 17$		
Reflections collected	14133		
Independent reflections	6478 [R(int) = 0.0684]		
Completeness to theta = 72.39°	97.2 %		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	6478 / 0 / 450		
Goodness-of-fit on F ²	1.113		
Final R indices [I>2sigma(I)]	R1 = 0.0440, wR2 = 0.09	00	
R indices (all data)	R1 = 0.0600, wR2 = 0.1191		
Absolute structure parameter	-0.053(18)		
Largest diff. peak and hole	0.753 and -0.645 e.Å ⁻³		

	Х	у	Z	U(eq)	
C(1)	9071(5)	9770(4)	7798(3)	23(1)	
C(2)	9725(5)	9704(4)	8318(2)	19(1)	
C(3)	10846(4)	9611(5)	8096(3)	24(1)	
C(4)	11836(5)	9459(4)	8361(3)	30(2)	
C(5)	12734(6)	9414(4)	7972(3)	43(2)	
C(6)	12689(6)	9505(5)	7345(3)	42(2)	
C(7)	11461(5)	9722(5)	6424(3)	34(2)	
C(8)	10431(6)	9805(4)	6216(3)	37(2)	
C(9)	9529(5)	9821(4)	6622(3)	26(2)	
C(10)	9718(5)	9776(4)	7253(3)	25(1)	
C(11)	10804(5)	9676(5)	7445(3)	25(1)	
C(12)	11675(5)	9641(5)	7060(3)	31(1)	
C(13)	7258(5)	9504(4)	7434(2)	21(1)	
C(14)	7227(6)	8529(4)	7322(2)	29(1)	
C(15)	6551(6)	8192(5)	6873(3)	36(2)	
C(16)	5908(5)	8780(5)	6544(3)	36(2)	
C(17)	5929(5)	9741(6)	6657(3)	40(2)	
C(18)	6597(5)	10118(5)	7090(3)	28(2)	
C(19)	6608(6)	11158(5)	7209(3)	33(2)	
C(20)	5530(9)	11586(8)	7233(7)	121(6)	
C(21)	7289(13)	11664(6)	6745(5)	119(6)	
C(22)	7915(5)	7852(4)	7694(3)	26(1)	
C(23)	8797(6)	7416(5)	7309(3)	37(2)	
C(24)	7257(6)	7078(4)	7991(3)	35(2)	
C(25)	9924(4)	9554(5)	9424(3)	23(1)	
C(26)	9885(6)	8659(4)	9688(3)	28(2)	
C(27)	10441(6)	8508(5)	10237(3)	31(2)	
C(28)	11023(5)	9194(5)	10515(3)	33(2)	
C(29)	11088(5)	10058(5)	10244(3)	32(2)	
C(30)	10562(5)	10247(4)	9689(3)	25(1)	

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(31)	10707(6)	11211(5)	9401(3)	32(2)
C(32)	11890(6)	11490(5)	9341(3)	41(2)
C(33)	10076(6)	11956(5)	9739(3)	39(2)
C(34)	9291(6)	7859(4)	9371(3)	32(2)
C(35)	8830(6)	7131(5)	9799(4)	43(2)
C(36)	10042(6)	7388(5)	8911(4)	44(2)
C(37)	5117(6)	10566(6)	8888(7)	121(6)
C(38)	5830(6)	9033(5)	8785(4)	47(2)
C(39)	7125(5)	12512(4)	8866(3)	37(2)
C(40)	8708(6)	12158(5)	8286(3)	34(2)
C(41)	7219(7)	11088(5)	10204(3)	43(2)
C(42)	7257(8)	9414(5)	10133(3)	52(2)
N(1)	7968(4)	9875(3)	7889(2)	21(1)
N(2)	9273(4)	9755(3)	8898(2)	21(1)
N(3)	6081(4)	10000(4)	8847(3)	37(1)
N(4)	7861(4)	11782(3)	8674(2)	24(1)
N(5)	7716(6)	10289(4)	9899(2)	35(1)
Zr(1)	7672(1)	10390(1)	8794(1)	21(1)

C(1)-N(1)	1.398(7)	
C(2)-N(2)	1.383(7)	
N(1)-Zr(1)	2.133(4)	
N(2)-Zr(1)	2.207(4)	
N(3)-Zr(1)	2.065(5)	
N(4)-Zr(1)	2.029(4)	
N(5)-Zr(1)	2.406(4)	
N(5)-H(100)	0.90(7)	
C(1)-N(1)-Zr(1)	109.8(3)	
C(2)-N(2)-Zr(1)	107.3(4)	
Zr(1)-N(5)-H(100)	108(4)	
N(4)-Zr(1)-N(3)	112.7(2)	
N(4)-Zr(1)-N(1)	101.69(18)	
N(3)-Zr(1)-N(1)	97.1(2)	
N(4)-Zr(1)-N(2)	108.34(19)	
N(3)-Zr(1)-N(2)	138.8(2)	
N(1)-Zr(1)-N(2)	78.15(18)	
N(4)-Zr(1)-N(5)	100.7(2)	
N(3)-Zr(1)-N(5)	87.1(3)	
N(1)-Zr(1)-N(5)	153.5(2)	
N(2)-Zr(1)-N(5)	81.5(2)	

 Table S3. (Selected) bond lengths [Å] and angles [°] for 5a.

	U11	U22	U33	U23	U13	U12
$\mathbf{C}(1)$	27(3)	22(3)	20(3)	-1(3)	4(2)	2(3)
C(2)	26(3)	17(3)	13(2)	-7(3)	-3(2)	-8(3)
C(3)	21(3)	21(3)	29(3)	-8(3)	-2(2)	3(3)
C(4)	22(3)	24(4)	44(4)	-4(3)	0(3)	2(3)
C(5)	16(3)	37(4)	75(5)	-18(4)	0(4)	4(3)
C(6)	23(3)	30(3)	72(5)	-9(4)	10(4)	-7(4)
C(7)	40(4)	24(3)	38(3)	-2(3)	23(3)	-7(3)
C(8)	61(4)	30(4)	22(3)	3(3)	13(4)	3(3)
C(9)	38(4)	19(3)	21(3)	-4(3)	6(3)	5(3)
C(10)	32(3)	14(3)	28(3)	-3(3)	0(3)	-1(3)
C(11)	25(3)	18(3)	32(3)	-3(3)	-5(2)	-7(3)
C(12)	27(3)	15(3)	50(4)	-10(3)	10(3)	-6(3)
C(13)	18(3)	38(3)	8(2)	-3(2)	8(2)	-7(3)
C(14)	33(3)	39(3)	16(3)	-11(3)	-1(3)	-10(3)
C(15)	33(4)	45(4)	29(3)	-3(3)	4(3)	-6(4)
C(16)	31(4)	54(5)	24(3)	-11(3)	-6(3)	-20(4)
C(17)	27(3)	62(6)	30(3)	-2(4)	-3(3)	16(4)
C(18)	26(3)	42(4)	17(3)	-1(3)	-11(2)	-7(3)
C(19)	36(4)	38(4)	25(3)	5(3)	0(3)	6(3)
C(20)	62(7)	96(9)	204(15)	-76(10)	-30(9)	40(7)
C(21)	231(17)	32(5)	93(7)	3(5)	100(10)	3(8)
C(22)	30(4)	21(3)	28(3)	-5(3)	-2(3)	1(3)
C(23)	36(4)	38(4)	36(4)	-9(3)	10(3)	1(3)
C(24)	35(3)	28(3)	42(4)	-8(3)	16(3)	-1(3)
C(25)	22(3)	25(3)	22(3)	-1(3)	-12(2)	8(3)
C(26)	35(4)	26(3)	23(3)	-2(3)	-12(3)	-2(3)
C(27)	39(4)	27(3)	27(3)	5(3)	-6(3)	5(3)
C(28)	35(4)	45(4)	20(3)	4(3)	-15(3)	7(3)
C(29)	34(4)	37(4)	24(3)	-6(3)	-14(3)	10(3)
C(30)	26(3)	23(3)	27(3)	6(3)	0(3)	-2(3)
C(31)	43(4)	30(4)	23(3)	0(3)	-10(3)	-9(3)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **5a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(32)	54(5)	41(4)	28(3)	-7(3)	-3(3)	-10(4)
C(33)	43(4)	30(4)	44(4)	6(3)	-7(4)	-8(3)
C(34)	38(4)	26(3)	33(4)	3(3)	-9(3)	-3(3)
C(35)	46(5)	30(4)	51(5)	4(4)	-10(4)	-8(4)
C(36)	53(5)	22(3)	56(5)	-8(4)	-7(4)	10(3)
C(37)	31(4)	61(7)	272(18)	-78(10)	-21(8)	9(4)
C(38)	50(4)	34(4)	55(5)	-7(4)	17(5)	-14(3)
C(39)	41(4)	25(3)	46(4)	2(3)	24(4)	8(3)
C(40)	39(4)	25(3)	38(4)	8(3)	8(3)	10(3)
C(41)	57(5)	53(4)	18(3)	-10(3)	10(3)	24(5)
C(42)	75(6)	49(5)	31(3)	22(3)	33(4)	11(5)
N(1)	24(3)	24(3)	16(2)	-6(2)	-4(2)	9(2)
N(2)	21(2)	18(2)	23(3)	-1(2)	-1(2)	4(2)
N(3)	20(3)	41(3)	49(4)	-7(3)	7(3)	-11(2)
N(4)	27(3)	15(2)	29(3)	-1(2)	6(2)	-1(2)
N(5)	50(3)	39(3)	17(2)	5(2)	4(3)	5(4)
Zr(1)	24(1)	19(1)	18(1)	-2(1)	1(1)	1(1)

Figure S1. ¹H NMR 3,5-(CF₃)₂C₆H₃-BIANH₂ (**3**).

Figure S7. ¹H-NMR spectrum (300 MHz, C₆D₆, 298K) of 5a.

Figure S8. ¹³C-NMR spectrum (75 MHz, C₆D₆, 298K) of 5a

Quantification and characterization of hydroamination products. Ib-IVb have been quantified by gas chromatography with an internal standard. Pure materials to be used for the calibration curve were isolated by flash-chromatography on silica gel as viscous oils and characterized by NMR spectroscopy; ¹H NMR and ¹³C{¹H} NMR are consistent with the literature³

2-methyl-4,4-diphenylpyrrolidine (Ib): ¹H NMR (300 MHz, CDCl₃, 293K): δ 1.21 (d, J_{HH} = 6.3 Hz, 3H), 1.86 (br s, 1 H, NH), 2.04 (dd, J_{HH} = 8.9 Hz, J_{HH} = 12.6 Hz, 1 H), 2.75 (dd, J_{HH} = 6.3 Hz, J_{HH} = 12.6 Hz, 1 H), 3.34-3.42 (m, 1H), 3.48 (d, J_{HH} = 11.3 Hz, 1 H), 3.68 (d, J_{HH} = 11.3 Hz, 1 H), 7.16-7.30 ppm (m, 10 H). ¹³C{¹H} NMR (75 MHz, CDCl₃, 293 K): δ 22.5, 47.2, 53.2, 57.4, 58.0, 126.1, 127.1, 127.2, 128.4, 147.2, 147.9 ppm.

3-methyl-2-azaspiro[4.5]decane (IIb): ¹H NMR (300 MHz, CDCl₃, 293K): δ 0.94 (dd, $J_{\text{HH}} = 9.2$ Hz, $J_{\text{HH}} = 12.5$ Hz, 1 H), 1.12 (d, $J_{\text{HH}} = 6.5$ Hz, 3 H), 1.31-1.43 (m, 10 H), 1.71 (dd, $J_{\text{HH}} = 6.5$ Hz, $J_{\text{HH}} = 12.5$ Hz, 1 H), 1.90 (br s, 1 H, NH), 2.55 (d, $J_{\text{HH}} = 11.0$ Hz, 1 H), 2.76 (d, $J_{\text{HH}} = 11.0$ Hz, 1 H), 3.14 ppm (m, 1 H). ¹³C{¹H} NMR (75 MHz, CDCl₃, 293 K): δ 21.5, 23.7, 23.9, 26.1, 37.3, 38.6, 44.0, 47.6, 54.0, 59.2 ppm.

2,4,4-trimethylpyrrolidine (IIIb): ¹H NMR (300 MHz, CDCl₃, 293K): δ 1.03 (s, 3 H), 1.07 (s, 3 H), 1.13 (dd, $J_{\text{HH}} = 3.3$ Hz, $J_{\text{HH}} = 12.4$ Hz, 1 H), 1.14 (d, $J_{\text{HH}} = 6.2$ Hz, 3 H), 1.70 (dd, $J_{\text{HH}} = 6.7$ Hz, $J_{\text{HH}} = 12.4$ Hz, 1 H), 2.60 (d, $J_{\text{HH}} = 11.0$ Hz, 1 H), 2.74 (d, $J_{\text{HH}} = 11.0$ Hz, 1 H), 3.18-3.35 ppm (m, 1 H). ¹³C{¹H} NMR (75 MHz, CDCl₃, 293 K): δ 21.9, 28.1, 29.0, 39.9, 49.7, 54.4, 61.1 ppm.

1,2,4,4-tetramethylpyrrolidine (IVb): ¹H NMR (300 MHz, CDCl₃, 293K): δ 1.10 (d, J_{HH} = 6.5 Hz, 3 H), 2.18 (dd, J_{HH} = 9.0 Hz, J_{HH} = 13.0Hz, 1 H), 2.36 (s, 3 H), 2.42-2.52 (m, 1 H), 2.86 (dd, J_{HH} = 7.5 Hz, J_{HH} = 13.0 Hz, 2 H), 3.78 (d, J_{HH} = 10.0 Hz, 1 H), 7.11-7.29 ppm (m, 10 H). ¹³C{¹H} NMR (75 MHz, CDCl₃, 293 K): δ 19.1, 40.7, 48.7, 52.9, 62.1, 70.6, 125.7, 126.0, 127.3, 127.7, 128.3, 128.4, 149.3, 150.9 ppm.

³ a) S. Hong, S. Tian, M. V. Metz, T. J. Marks, *J. Am. Chem. Soc.* **2003**, *125*, 14768-14783; b) D. Riegert, J. Collin, A. Meddour, E. Schulz, A. A. Trifonov, *J. Org. Chem.* **2006**, *71*, 2514-2517; c) A. Ates, C. Quinet, *Eur. J. Org. Chem.* **2003**, 1623-1626 d) S. Majumder, A. L. Odom, *Organometallics* **2008**, *27*(6), 1174-1177

Figure S9. ¹H-NMR spectrum (250 MHz, C₇D₈, 298K) of in situ formation of 5c from 5 and Y(CH₂SiMe₃)₃(THF)₂.

In situ prepared yttrium catalysts efficiencies were evaluated by ¹H NMR. Spectra for the formation of products **IIb**, **IIIb**, **Vb**, **VIb** and **VIIb** are copied below, obtained after complete conversion of the substrates. ¹H NMR spectra were consistent with literature data:

Figure S10: Crude ¹H-NMR spectrum (250 MHz, C₇D₈, 298K) of the catalyzed formation of IIb from IIa (Table 2, entry 8).⁴

⁴D. Riegert, J. Collin, A. Meddour, E. Schulz, A. Trifonov, *J. Org. Chem.* **2006**, *71*, 2514.

Figure S11: Crude ¹H-NMR spectrum (360 MHz, C₇D₈, 298K) of the catalyzed formation of IIIb from IIIa (Table 2, entry 16).⁵

⁵ A. Ates, C. Quinet, *Eur. J. Org. Chem.* **2003**, 1623.

Figure S12: Crude ¹H-NMR spectrum (360 MHz, C₇D₈, 298K) of the catalyzed formation of Vb from Va (Table 3, entry 2).⁶

⁶ P. D. Knight, I. Munslow, P. N. O'Shaughnessy, P. Scott, *Chem. Comun.* **2004**, 894.

Figure S13: Crude 1H-NMR spectrum (300 MHz, C₇D₈, 298K) of the catalyzed formation of **VIb** from **VIa** (Table 4, entry 4).⁷

⁷ M. R. Crimmin, I. J. Casely, M. S. Hill, J. Am. Chem. Soc. 2005, 127, 2042.

Figure S14: Crude 1H-NMR spectrum (360 MHz, C₇D₈, 298K) of the catalyzed formation of VIIb from VIIa (Table 4, entry 10).⁸

⁸I. Aillaud, J. Collin, C. Duhayon, R. Guillot, D. Lyubov, E. Schulz, A. Trifonov, Chem. Eur. J. 2008, 14, 2189.