Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supporting Information

Improved Cycling Stability of MoS2-coated Carbon Nanotubes on Graphene Foam

as a Flexible Anode for Lithium-ion Batteries

Xiaoxuan Ma ,Xusong Liu , Jiupeng Zhao*, Jian Hao , Caixia Chi , Xiaoxu Liu*, Yao Li*,

Shikun Liu , Kun Zhang

Fig. S1. The change of Water contact angles on surfaces of (a) GCN and (b) GCNM

Fig. S2. SEM images of (a) low-magnification of GCN; (b) high-magnification of GCN

Fig. S3.(a) XPS survey spectra obtained for GCN; (b) C1s deconvolution spectra of GCNM; (c) C1s deconvolution spectra of GCN, respectively.

Fig. S4. The TGA curves of MoS₂ power, GCN, GM and GCNM under air atmosphere.

Fig. S5. The galvanostatic charge-discharge profiles of the GCNM electrode at a current density of 0.1A g⁻¹ in the voltage range of 0.01–3.0 V vs. Li⁺/Li. (b) Cycling performance of GCNM and GM electrodes at a current density of 0.1 Ag⁻¹.

Fig. S6. (a) Galvanostatic charge and discharge profiles for the GM electrode of the initial three, 50^{th} and 100^{th} cycles; (b) The cycling performance of the GM electrode.

Fig. S7. (a) Galvanostatic charge and discharge profiles for the GCN electrode of the initial three,50th and 100thcycles; (b) The cycling performance of the GCN electrode.

Table S1. A comparison of the electrochemical performance of MoS2 and its

Electrode	First cycle discharge	First	Cycling stability:	Rate performance: current desity
description	capacity,mAhg ⁻¹ /	coulombic	reversible capacity, mAh g ⁻¹	A g ⁻¹ / reversible capacity, mAh g ⁻¹
	current density, A g^{-1}	Efficiency	/current desity Ag ⁻¹	
		(%)	/after(X)cycles	
Our work	1511.6/0.1	83.27	1112 / 0.1/ 100	0.1,0.2,0.5,1,50.1/1218.0,975.0,7
				69.3,576.5,410.4,1178.2
MoS₂@carbon	1020 /0.1	73.50	750 /0.1/50	1.0/500
Spheres ¹				
MoS ₂ /CNT network ²	1715 /0.2	76.10	1456 /0.2/50	0.4, 0.6,0.8,1/1431, 1367,
				1302,1224
MoS ₂ /graphene	2200 /0.1	59.10	1290/0.1/50	1.0/1040
Nanosheet ³				
3D MoS₂ flowers ⁴	869 /0.1	65.90	633/0.1/50	0.1,0.4,/848 ,740
MoS ₂ -graphene	1367/0.1	66.70	808/0.1/100	1.0/571
Composites ⁵				
MoS₂@CMK-3 ⁶	1056 /0.1	78.03	602 /0.25/100	0.25,0.5,2/832, 774, 666,564
Graphene-MoS ₂	1200 /0.6	68.00	1200/0.6/30	7.2,8.4/620,270
composited network ⁷				
CNT@MoS ⁸	1434/0.1	60.01	698/0.1/ 60	0.03,0.05,1/653, 459 , 369
MoS _x /CNT ⁹	1549 /0.5	74.80	≥10000/0.05/40	0.05, 0.2, 0.5,1/1119, 904, 659,
				358,197
MoS ₂ -CNT film ¹⁰	1117/0.1	73.40	960 /0.01/100	3.2/670

composites with this work.

Reference

- 1 L. Zhang, X. Wang and D. Lou, *Chem-Eur J.* 2014, **20**, 5219-5223.
- 2 S. Wang, X. Jiang, H. Zheng, H. Wu, S. J. Kim and C. Feng, *Nanosci. Nanotech. Let.* 2012, **4**, 378-383.
- 3 K. Zhang, H. J. Kim, X. Shi, J. T. Lee, J. M. Choi, M. S. Song, J. H. Park, *Inorg. Mater*. 2013, **52**, 9807-9812.
- 4 C. B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X. J. Wu, H. Zhang, *Nanoscale*. 2014, **6**, 5624-5629.
- 5 K. Chang, W. Chen, ACS Nano. 2011, 5, 4720-4728.
- 6 H. Liu, D. Su, R. Zhou, B. Sun,; G. Wang,; S. Z. Qiao, H *Advanced Energy Materials*. 2012, **2**, 970-975.
- 7 K. Rana, J. Singh, T. J. Lee, J. H. Park, J. H. Ahn, ACS *Appl. Mater. Inter.* 2014, 6, 11158-11166.
- 8 S. Ding, J. S. Chen, X. W. D. Lou, *Chem-Eur J* 2011, **17**, 13140-13148.