Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New Journal of Chemistry

Zinc Complexes Formed by 2,2'-Bipyridine and 1,10-Phenanthroline Moieties Combined with 2-Azanorbornane: Modular Chiral Catalysts for Aldol Reaction

Elżbieta Wojaczyńska,* Jacek Skarżewski, Łukasz Sidorowicz, Robert Wieczorek. and Jacek Wojaczyński

Electronic Supplementary Information

Contents

A) Spectral data

Figure S1. ¹H NMR and ¹³C NMR spectra of 4

Figure S2. ¹H NMR and ¹³C NMR spectra of 6

Figure S3. ¹H NMR and ¹³C NMR spectra of 9

Figure S4. ¹H NMR and ¹³C NMR spectra of 10

Figure S5. ¹H NMR and ¹³C NMR spectra of 11

Figure S6. ¹H NMR and ¹³C NMR spectra of **12**

Figure S7. ¹H NMR and ¹³C NMR spectra of 13

Figure S8. ¹H NMR and ¹³C NMR spectra of 14

Figure S9. Comparison of ¹H NMR spectra of monomeric Zn(II) and Cd(II) complexes of ligand 11

Table S1 ¹H NMR chemical shifts of ligand **11** and its zinc complexes

Table S2. ¹³C NMR chemical shifts of ligand 11 and its zinc complexes

Table S3. ¹H NMR chemical shifts of ligand **10** and its zinc complexes

Table S4. ¹³C NMR chemical shifts of ligand 10 and its zinc complexes

Table S5. ¹H and ¹³C NMR chemical shifts of ligand 9 and its zinc complex

B) DFT calculations

Table S6. DFT calculated energies

Tables S7-S17. Comparison of DFT calculated and experimental ¹H NMR chemical shifts

Figures S10-S23 Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns and the correlation of shift values for particular positions.

Figure S1. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of 4

Figure S2. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of 6

Figure S3. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of 9

Figure S4. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of 10

Figure S5. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of **11**

Figure S6. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of **12**

Figure S7. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of **13**

Figure S8. ¹H NMR and ¹³C NMR spectra (chloroform-*d*, 300 K) of 14

Figure S9. Comparison of ¹H NMR spectra of monomeric Zn(II) (blue line) and Cd(II) (black line) complexes of ligand **11** (chloroform-*d*, 300 K)

Table S1 ¹H NMR chemical shifts of ligand **11** and its zinc complexes (methanol- d_4 , 300 K; L = ligand **11**, X = OAc⁻). Numbering scheme for ligand **11** is shown. Entries 4 and 5 show the chemical shift changes with the most pronounced differences (≥ 0.2 ppm) listed in bold.

Entry	Species	1	3	4	5	6	7	1'	1'-Me	o-Ph	<i>m</i> -Ph	<i>p</i> -Ph	1"	3"	P3	P4	P5	P6	P7	P8	P9
1	Ligand 11	3.72	2.49	2.31	1.38	1.48	1.39	3.66	1.40	7.49	7.38	7.31		8.27	8.23	8.42	7.97	7.97	8.47	7.79	9.10
	U				1./1	2.13	1.92						3.11								
2	$[ZnJ_{2}]^{2+}$	3.36	1.06	0.86	-1.46	1.30	0.90	2.65	0.99	6.89	7.44	7.43	2.50	8.84	8.88	9.45	8.45	8.31	8.65	7.63	7.63
-		0.00		0.00	0.25	1.40	1.61	2.00	Ū				3.04		0.00	21.10	01.10	0.01	0.00	1.00	1100
3	$[7n I X]^{(2-n)+}$	3 73	2 57	2 15	1.41	1.49	1.39	3 66	1.40	7.51	7.41	7.39	2.89	7.78	8 1 2	8 01	8 1 5	8 1 5	8 68	7 00	0.08
5		5.75	2.57	2.45	1.69	2.10	1.84	5.00	1				3.45		0.12	0.91	0.15	0.15	0.00	1.99	9.00
4	Difference				0.03	0.01	0.00		00	0.01	0.03	0.08	0.18	-0.49	0.11	0.40	0.10	0.10	0.01	0.00	0.00
	2 1	0.01	0.08	0.14	-0.02	-0.03	0.00	0.00	0.00	0.01	0.05	0.00	0.34	0.12	-0.11	0.49	0.18	0.18	0.21	0.20	-0.02
	Difference				-2.87	-0.19	-8:49		41	0.62	0.02	0.04	-0.39	1.04							
5	2.2	-0.37	-1.51	-1.59	-1.44	-0.70		-1.01	-0	-0.02	0.05	0.04	-0.41	1.00	0.76	0.54	0.30	0.16	-0.03	-0.36	-1.45
			-				0.23-		-	-		-				-				-	

Table S2. ¹³C NMR chemical shifts of ligand **11** and its zinc complexes (methanol- d_4 . 300 K; L = ligand **11**, X = OAc⁻). Quaternary carbons not included. Numbering scheme for ligand **11** is shown.

Table S3 ¹H NMR chemical shifts of ligand **10** and its zinc complexes (methanol- d_4 , 300 K; L = ligand **10**, X = OAc⁻). Numbering scheme for ligand **10** is shown. Entries 4 and 5 show the chemical shift changes with the most pronounced differences listed in bold.

Entry	Species	1	3	4	5	6	7	1'	1'-Me	o-Ph	<i>m</i> -Ph	<i>p</i> -Ph	1"	3"	BP3	BP4	BP5	BP3'	BP4'	BP5'	BP6'
1	Ligand 10	3.71	2.37	2.31	1.34	1.49	1.37	3.63	1.41	7.48	7.38	7.34	2.60	7.78	8.48	7.95	7.86	8.36	7.98	7.45	8.66
					1.72	2.13	1.88						3.10								
2	$[ZnL_2]^{2+}$	3.48	1.26	0.92	-0.26	1.12	1.02	2.93	1.08	6.97	7.42	7.42	2.43	8.56	9.02	8.89	8.57	8.67	8.18	7.46	7.29
					0.77	1.60	1.66						2.91								
3	$[ZnLX_n]^{2-n}$	3.73	2.52	2.43	1.38	1.48	1.43	3.66	1.43	7.51	7.41	7.35	2.85	7.59	8.63	8.41	7.87	8.51	8.21	7.74	8.76
					1.70	2.10	1.83						3.37								
4	Difference	0.02	0.15	0.12	0.04	-0.01	0.06	0.03	0.02	0.03	0.03	0.01	0.25	-0.19	0.15	0.46	0.01	0.15	0.23	0.29	0.10
	3-1				-0.02	-0.03	-0.05						0.27								
5	Difference	-0.25	-1.26	-1.51	-1.64	-0.36	-0.41	-0.73	-0.35	-0.54	0.01	0.07	-0.42	0.97	0.39	0.48	0.70	0.16	-0.03	-0.28	-1.47
	2-3				-2.47	-0.50	-0.17						-0.46								

Table S4. ¹³C NMR chemical shifts of ligand 10 and its zinc complexes (methanol- d_4 . 300 K; L = ligand 10, X = OAc⁻). Quaternary carbons notincluded. Numbering scheme for ligand 10 is shown.

Entry	Species	1	3	4	5	6	7	1'	1'- Me	o-Ph	<i>m</i> -Ph	p-Ph	1"	3"	BP3	BP4	BP5	BP3'	BP4'	BP5'	BP6'
1	Ligand 10	59.0	69.5	39.6	28.2	21.6	34.3	61.1	21.1	128.3	128.1	127.3	65.5	163.2	121.4	137.7	120.9	121.8	137.2	124.0	148.7
2	$\left[ZnL_2\right]^{2+}$	58.4	66.9	38.2	27.5	21.8	33.0	61.3	22.8	127.4	128.3	128.3	63.3	162.1	125.6	145.2	128.8	123.6	141.1	127.8	147.2
3	$[ZnLX_n]^{2-n}$	59.0	68.5	40.5	28.4	21.6	34.1	60.9	21.1	128.3	128.0	128.0	63.9	159.7	123.6	142.8	126.5	121.9	140.2	126.6	148.7

Table S5. ¹H and ¹³C NMR chemical shifts of ligand 9 and its zinc complex (methanol- d_4 . 300 K; L = ligand 9, X = OAc⁻). Quaternary carbons not included. Numbering scheme for ligand 9 is shown.

Entry	Species	1	3	4	5	6	7	1'	1'-	0	т	р	1"	3"	P3	P4	P5	P6
									Me									
1	Ligand 9	3.71	2.34	2.30	1.35	1.48	1.39	3.63	1.40	7.45	7.36	7.31	2.55	7.70	7.86	7.86	7.44	8.57
					1.71	2.12	1.87						3.05					
		59.0	69.7	39,7	28.4	21.7	34.4	60.9	20.9	128.3	128.2	127.2	65.4	161.9	121.4	137.2	125.2	148.8
2	$[ZnLX_n]^{2-n}$	3.72	2.45	2.44	1.38	1.49	1.41	3.66	1.42	7.50	7.40	7.36	2.76	7.41	7.79	8.26	7.84	8.74
					1.68	2.08	1.80						3.43					
		58.8	69.2	40.2	27.6	21.7	34.5	60.8	20.9	128.4	128.2	127.4	62.6	162.6	127.1	141.3	128.5	149.4

Table S6. DFT calculated energies (in hartree, differences given in kcal/mol)

Ligand 10

Compact conformation	-1225.982791
Open conformation	-1225.988750
	-3.74 kcal/mol
Ligand 11	
Compact conformation	-1302.180957
Open conformation	-1302.173447
1	-4.71 kcal/mol
[ZnL] ²⁺ complexes	
Ligand 10 , (N2) coordination	-3004.956221
Ligand 10 , (N4) coordination	-3004.987887
6 , (,	-19.87 kcal/mol
Ligand 11 , (N2) coordination	-3081.149052
Ligand 11 . (N4) coordination	-3081.174177
, (, (,	-15.77 kcal/mol
[ZnL ₂] ²⁺ complexes	
Ligand 10 . (N4) coordination	-4231.030063
Ligand 10 (N6) coordination	-4231 075199
	-28.32 kcal/mol
Ligand 11 . (N4) coordination	-4383.415267
Ligand 11. (N6) coordination	-4383.452777
, (1.0) • 000 • • • • • • • • • • • • • • • •	-23.54 kcal/mol

Ligand 10 – a compact conformation

Table S7. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-d4, all values in ppm)*

Position	Calculated	Experimental	Difference
BP6'	9.22	8.66	0.56
H3"	8.55	7.78	0.77
BP4	8.52	7.95	0.57
BP4'	8.36	7.98	0.38
BP3'	8.26	8.36	-0.10
BP3	8.22	8.48	-0.26
ortho-H	8.02	7.48	0.54
BP5	7.70	7.76	-0.06
BP5'	7.62	7.45	0.17
para-H	7.03	7.34	-0.31
meta-H	6.66	7.38	-0.72
H1"	4.00	3.10	0.90
H1'	3.94	3.63	0.31
H1	3.30	3.71	-0.41
H1"	3.04	2.60	0.44
H6	2.15	2.13	0.02
H4	1.88	2.31	-0.43
H7	1.86	1.88	-0.02
1'-Me	1.76	1.41	0.35
H5	1.69	1.72	-0.03
H6	1.61	1.49	0.12
H7	1.34	1.37	-0.03
H3	1.24	2.37	-1.13
H5	1.14	1.34	-0.20

Figure S10. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of ligand **10** (compact conformation) and the correlation of shift values for particular positions.

Table S8. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
BP6'	9.15	8.66	0.49
H3"	8.66	7.78	0.88
BP4'	8.29	7.98	0.31
BP5	8.19	7.86	0.33
BP4	8.18	7.95	0.23
BP3'	8.07	8.36	-0.29
BP3	7.96	8.48	-0.52
ortho-H	7.80	7.48	0.32
meta-H	7.72	7.38	0.34
BP5'	7.71	7.45	0.26
para-H	7.65	7.34	0.31
H1'	3.60	3.63	-0.03
H1	3.47	3.71	-0.24
H1"	2.93	3.10	-0.17
H1"	2.78	2.60	0.18
H3	2.40	2.37	0.03
H6	2.11	2.13	-0.02
H7	1.76	1.88	-0.12
H4	1.56	2.31	-0.75
H5	1.46	1.72	-0.26
H6	1.41	1.49	-0.08
1'-Me	1.32	1.41	-0.09
H7	1.21	1.37	-0.16
H5	1.06	1.34	-0.28

Figure S11. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of ligand **10** (open conformation) and the correlation of shift values for particular positions.

Table S9. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
P9	9.61	9.50	0.11
P4	8.90	8.42	0.48
H3"	8.86	8.27	0.59
P7	8.75	8.47	0.28
P5	8.41	7.97	0.44
P6	8.39	7.97	0.42
P3	8.13	8.23	-0.10
P8	7.99	7.79	0.20
ortho-H	7.98	7.49	0.49
para-H	6.89	7.31	-0.42
meta-H	6.40	7.38	-0.98
H1"	4.14	3.11	1.03
H1'	3.90	3.66	0.24
H1	3.36	3.72	-0.36
H1"	3.22	2.71	0.51
H6	2.11	2.13	-0.02
H7	1.99	1.92	-0.07
H4	1.96	2.31	-0.35
H5	1.67	1.71	-0.04
H6	1.65	1.48	0.17
1'-Me	1.93	1.40	0.53
H7	1.38	1.39	-0.01
H3	1.20	2.49	-1.29
H5	1.05	1.38	-0.33

Figure S12. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of ligand **11** (compact conformation) and the correlation of shift values for particular positions.

Table S10. Comparison of DFT calculated and experimental ¹H NMR chemical shifts
(methanol-d4, all values in ppm)*

Position	Calculated	Experimental	Difference
P9	9.69	9.10	0.59
H3"	8.93	8.27	0.66
P4	8.76	8.42	0.34
P3	8.62	8.23	0.39
P7	8.50	8.47	0.03
P5	8.18	7.97	0.21
P6	8.09	7.97	0.12
ortho-H	7.92	7.49	0.43
P8	7.80	7.79	0.01
meta-H	7.78	7.38	0.40
para-H	7.74	7.31	0.43
H1'	3.65	3.66	-0.01
H1	3.49	3.72	-0.23
H1"	2.96	3.11	-0.15
H1"	2.76	2.71	0.05
H3	2.46	2.49	-0.03
H6	2.12	2.13	-0.05
H7	1.72	1.92	-0.20
H4	1.60	2.31	-0.71
H5	1.51	1.71	-0.20
H6	1.41	1.48	-0.07
1'-Me	1.38	1.40	-0.02
H7	1.28	1.39	-0.11
H5	1.16	1.38	-0.22

Figure S13. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of ligand **11** (open conformation) and the correlation of shift values for particular positions.

Compound 10, [ZnL]²⁺ complex. (N2) coordination

Table S11. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-d4, all values in ppm)*

Position	Calculated	Experimental	Difference
BP3'	8.82	8.51	0.55
BP6'	9.03	8.76	0.22
BP4'	8.67	8.21	0.73
BP3	9.08	8.63	0.24
BP5	8.81	7.87	0.98
BP4	8.81	8.41	0.26
H3"	8.44	7.59	0.83
BP5'	7.98	7.74	0.49
ortho-H	7.92	7.51	0.23
meta-H	7.78	7.41	0.27
para-H	7.66	7.35	0.23
H1'	3.61	3.66	0.50
H1	3.59	3.73	-0.27
H1"	2.93	3.37	0.05
H3	2.53	2.52	0.75
H1"	2.75	2.85	-0.04
H6	2.10	2.10	-0.16
1'-Me	1.55	1.43	0.29
H7	1.54	1.83	-0.15
H5	1.63	1.70	-0.09
H6	1.27	1.48	0.04
H4	1.45	2.43	-1.04
H5	1.23	1.38	-0.05

Figure S14. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 2N-coordinated [ZnL]²⁺ complex of ligand **10** and the correlation of shift values for particular positions.

Compound 10, [ZnL]²⁺ complex. (N4) coordination

Table S12. Comparison of DFT calculated and experimental ¹H NMR chemical shifts
(methanol-d4, all values in ppm)*

Position	Calculated	Experimental	Difference
BP6'	9.34	8.76	0.58
H3"	9.20	7.59	1.61
BP3	8.90	8.63	0.27
BP4	8.90	8.41	0.49
BP4'	8.87	8.21	0.66
BP3'	8.87	8.51	0.36
BP5'	8.27	7.74	0.53
BP5	8.27	7.87	0.40
meta-H	7.82	7.41	0.41
para-H	7.82	7.35	0.47
ortho-H	7.75	7.51	0.24
H1'	4.67	3.66	1.01
H1"	4.56	3.37	1.19
H1	4.23	3.73	0.50
H3	3.93	2.52	1.41
H1"	3.78	2.85	0.93
H6	2.42	2.10	0.32
H4	2.01	2.43	0.42
H7	1.80	1.83	-0.03
H7	1.50	1.43	0.07
H5	1.34	1.70	-0.26
1'-Me	1.31	1.43	-0.12
H6	1.30	1.48	-0.18
H5	-0.04	1.38	-1.42

Figure S15. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 4N-coordinated [ZnL]²⁺ complex of ligand **10** and the correlation of shift values for particular positions.

Compound 10. $[ZnL_2]^{2+}$ complex. (N4) coordination

Table S13. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
	(average)		
BP3	9.08	9.02	0.06
BP4	8.84	8.89	-0.05
BP3'	9.08	8.67	0.41
BP5	8.51	8.57	-0.06
H3"	8.46	8.56	-0.10
BP4'	8.87	8.18	0.69
BP5'	8.14	7.46	0.68
para-H	7.65	7.42	0.23
meta-H	7.57	7.42	0.15
BP6'	8.66	7.29	1.37
ortho-H	6.96	6.97	-0.01
H1	3.26	3.48	-0.22
H1'	3.16	2.93	0.23
H1"	2.69	2.43	0.26
H1"	2.06	1.91	0.15
H7	1.07	1.66	-0.59
H6	1.59	1.60	-0.01
H3	1.72	1.26	0.46
H6	0.89	1.12	-0.23
1'-Me	1.22	1.08	0.14
H7	0.08	1.02	-0.94
H4	0.82	0.92	-0.10
H5	0.47	0.77	-0.30
H5	-0.56	-0.26	-0.30

Figure S16. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 4N-coordinated $[ZnL_2]^{2+}$ complex of ligand **10** and the correlation of shift values for particular positions.

Compound 10. $[ZnL_2]^{2+}$ complex. (N6) coordination

Table S14. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
	(average)		
BP3	9.00	9.02	-0.02
BP4	9.04	8.89	0.15
BP3'	8.65	8.67	-0.02
BP5	8.40	8.57	-0.17
H3"	8.18	8.56	-0.38
BP4'	8.28	8.18	0.10
BP5'	7.52	7.46	0.06
para-H	7.93	7.42	0.51
meta-H	7.90	7.42	0.48
BP6'	7.38	7.29	0.09
ortho-H	7.65	6.97	0.68
H1	3.22	3.48	-0.26
H1'	3.16	2.93	0.23
H1"	2.46	2.43	0.03
H1"	2.06	1.91	0.15
H7	1.05	1.66	-0.61
H6	1.76	1.60	0.16
H3	0.68	1.26	-0.58
H6	1.20	1.12	0.08
1'-Me	1.22	1.08	0.14
H7	0.68	1.02	-0.34
H4	0.38	0.92	-0.54
H5	0.83	0.77	0.06
H5	0.50	-0.26	0.76

Figure S17. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 6N-coordinated [ZnL₂]²⁺ complex of ligand **10** and the correlation of shift values for particular positions.

Compound 11, Zn(II) complexes of 1:1 stoichiometry

Position	Calculated ¹ H NMR chemical shift				Experimental ¹ H NMR
	$[ZnL]^{2+}(2N)$	$[ZnL]^{2+}$ (4N)	$[ZnL(OAc)]^+$	$[ZnL(OAc)_2]$	chemical shift
P9	9.38	9.54	9.77	9.60	9.08
P4	9.05	9.36	9.25	9.08	8.91
P7	9.50	9.30	9.07	8.90	8.68
P6	8.83	8.67	8.53	8.46	8.15
P5	8.61	8.64	8.52	8.40	8.15
P3	9.09	8.58	8.50	8.36	8.12
P8	8.60	8.43	8.46	8.30	7.99
H3"	8.67	9.26	9.12	9.06	7.78
ortho-H	7.81	7.64	7.72	8.30	7.51
meta-H	7.69	7.76	7.73	7.80	7.41
para-H	7.57	7.81	7.75	7.69	7.39
H1	3.49	4.25	4.26	3.10	3.73
H1'	4.26	4.54	4.58	4.02	3.66
H1"	3.44	4.51	4.41	4.31	3.45
H1"	2.97	3.86	4.11	3.58	2.89
H3	3.17	3.91	3.99	3.84	2.57
H4	1.33	2.14	2.04	1.35	2.45
H6	1.99	2.45	2.39	0.80	2.10
H7	1.71	1.92	2.35	1.52	1.84
H5	1.55	1.43	1.39	0.87	1.69
H6	1.51	1.35	1.31	0.64	1.49
H5	1.23	-0.03	0.00	0.65	1.41
1'-Me	1.75	1.06	1.12	1.73	1.40
H7	1.06	1.63	1.40	0.92	1.39

Table S15. Comparison of DFT calculated and experimental ¹H NMR chemical shifts
(methanol-d4, all values in ppm)

Figure S18. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 2N-coordinated [ZnL]²⁺ complex of ligand **11** and the correlation of shift values for particular positions.

Figure S19. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 4N-coordinated [ZnL]²⁺ complex of ligand **11** and the correlation of shift values for particular positions.

Figure S20. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of [ZnL(OAc)]⁺ complex of ligand **11** and the correlation of shift values for particular positions.

Figure S21. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of [ZnL(OAc)₂] complex of ligand **11** and the correlation of shift values for particular positions.

Compound 11. $[ZnL_2]^{2+}$ complex. (N4) coordination

Table S16. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
	(average)		
P4	9.18	9.45	-0.27
P3	8.78	8.88	-0.10
H3"	8.73	8.84	-0.11
P7	9.42	8.65	0.77
P5	8.70	8.45	0.25
P6	8.86	8.31	0.55
P9	9.26	7.63	1.63
P8	8.50	7.63	0.87
meta-H	7.33	7.44	-0.11
para-H	7.49	7.43	0.06
ortho-H	6.73	6.89	-0.16
H1	2.98	3.36	-0.38
H1"	2.76	3.04	-0.28
H1'	2.03	2.65	-0.62
H1"	2.08	2.50	-0.42
H7	0.66	1.61	-0.95
H6	0.84	1.40	-0.56
H6	1.14	1.30	-0.16
H3	1.10	1.06	0.04
1'-Me	0.96	0.99	-0.03
H7	-0.46	0.90	-1.36
H4	1.14	0.86	0.28
H5	0.58	0.25	0.33
H5	0.28	-1.46	1.74

Figure S22. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 4N-coordinated $[ZnL_2]^{2+}$ complex of ligand **11** and the correlation of shift values for particular positions.

Compound 11. [ZnL₂]²⁺ complex. (N6) coordination

Table S17. Comparison of DFT calculated and experimental ¹H NMR chemical shifts (methanol-*d*₄, all values in ppm)*

Position	Calculated	Experimental	Difference
	(average)		
P4	9.57	9.45	0.12
P3	8.84	8.88	0.04
H3"	8.54	8.84	-0.30
P7	8.80	8.65	0.15
P5	8.66	8.45	0.21
P6	8.57	8.31	0.26
P8	7.76	7.63	0.13
P9	7.58	7.63	-0.05
meta-H	7.93	7.44	0.49
para-H	7.98	7.43	0.55
ortho-H	7.60	6.89	0.71
H1	3.13	3.36	-0.23
H1"	2.58	3.04	-0.46
H1'	3.06	2.65	0.41
H1"	2.18	2.50	-0.32
H7	1.03	1.61	-0.58
H6	1.47	1.40	0.07
H6	0.98	1.30	-0.32
H3	0.72	1.06	-0.34
1'-Me	1.14	0.99	0.15
H7	0.54	0.90	-0.36
H4	0.39	0.86	-0.47
H5	0.70	0.25	0.45
H5	-0.68	-1.46	0.78

Figure S23. Comparison of experimental and DFT calculated averaged chemical ¹H NMR shift patterns of 6N-coordinated $[ZnL_2]^{2+}$ complex of ligand **11** and the correlation of shift values for particular positions.