Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Materials

Synthesis and basic catalytic application of Pd nanoparticles supported on 3D nitrogen-doped reduced graphene oxide

Xiang Liu^{a, b}, Xiaohua Zhao^{c, *}, Yuanyuan Cao^a, Ting Li^a, Shu Qiu^a, Qiuzhong Shi^a

^a Institute of Chemical and Materials Engineering, Zhenjiang College, Zhenjiang 212000, China. ^b Biofuels Institute of Jiangsu University, Zhenjiang 212013, China.

^c School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. Email:Zhao12 19@163.com

Experimental section

Materials

All chemical reagents were of analytical grade and were used as received. GO were prepared according to a modified Hummers' method.

Preparation of 3D-NrGO

In a typical experiment, 10 mL GO (10 mg L⁻¹) aqueous dispersion with 1 mL formaldehyde solution (37% wt), 200 mg melamine and 400 mg FeCl₃6H₂O was sonicated for 20 min. Subsequently, the stable suspension was transferred and sealed into a 50 mL Teflon-lined stainless steel autoclave, heated at 180 °C for 24 h, and then cooled to room temperature naturally. After that, the obtained three-dimensional graphene hydrogel was treated by freeze-drying for 12 h. After heating the freeze-dried graphene gel at 850 °C for 2h with a heating speed of 5 °C/min under Ar atmosphere, the 3D nitrogen-doped reduced graphene oxide composite (3D-NrGO) was obtained by removing the Fe₂O₃ with 8M HCl and washing the residue until pH is equal to 7.0.

Preparation of 3D-NrGO/Pd

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is \mathbb{O} The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

In a typical experiment, 2 mL H₂PdCl₆ solution (5 mg/mL) was added into 20 mL PEG200 to form a homogeneous mixture, and then the above 50 mg 3D-NrGO was added into the above mixture and dispersed. The dispersion was kept for 24 h at 100 °C. After steps of rinsing with ethanol and drying in air, the resultant Pd NP-decorated 3D-NrGO composite was obtained, and denoted as 3D-NrGO/Pd. The product was collected by centrifugation and washed with EtOH three times. The content of Pd was estimated to be 8.1 wt% based on ICP-MS.

Suzuki Reduction Catalyzed by 3D-NrGO/Pd

Aryl halide (1.0 mmol), arylboronic acid (1.2 mmol), K_2CO_3 (2.5 mmol), and 1.5 mg of 3D-NrGO/Pd were added to the vessel with 6 mL water/EtOH (v/v=1/2). The mixture was continuously stirred at 60 °C for the desired time until complete consumption of the starting aryl halide. The reaction progress was monitored by GC at a fixed time interval. After the reaction, the catalyst was filtered from the mixture, washed by deionized water and absolute alcohol, and then dried in vacuum at 60 °C overnight. The product was extracted with diethyl ether and determined by GC, which using n-decane as the internal standard.

Fig. S1 (a) N2 adsorption-desorption isotherms of rGO/Pd and GO/Pd composites

Characterization of Products

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is \mathbb{O} The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

4-nitrobiphenyl (Table 2, entry 1, 4 and 8):

Pale yellow solid, ¹H NMR (300 MHz, CDCl₃): δ (ppm): 8.30 (d, J = 8.2 Hz, 2H),

7.73 (d, *J* = 8.9 Hz, 2H), 7.64-7.61 (m, 2H), 7.53-7.42 (m, 3H).

(Known compound, CAS 92-93-3, see: V. Percec, G.M. Golding, J. Smidrkal, O.

Weichold, J. Org. Chem., 2004, 69, 3447.).

Biphenyl (Table 2, entry 2 and 9):

White solid; mp 69-70 °C (lit. 72 °C), ¹H NMR (300 MHz, CDCl₃): δ 7.38 (t, *J* = 7.2

Hz, 2H), 7.47 (t, *J* = 22.0 Hz, 4H), 7.63 (d, *J* = 8.0 Hz, 4H).

(Known compound, CAS 92-52-4, see: Oncel, Nurdal et al. Journal of Organometallic Chemistry, 2016, 811, 81-90).

4-methoxybiphenyl (Table 2, entry 3):

White solid, ¹H NMR (300 MHz, CDCl₃): δ (ppm): 7.57-7.52 (m, 4H), 7.45-7.40 (m,

2H), 7.33-7.26 (m, 1H), 6.98 (m, 2H), 3.86 (s, 3H).

(Known compound, CAS 613-37-6, see: E. Shirakawa, Y. Hayashi, K.I. Itoh, R.

Watabe, N. Uchiyama, W. Konagaya, S. Masui, T. Hayashi, *Angew. Chem. Int. Ed.*, **2012**, *51*, 218.).

4-Cyanobiphenyl (Table 2, entry 5)

White solid; mp 83-85 °C (lit. 83-84 °C); ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.45 (m, 1H), 7.45-7.53 (m, 2H), 7.55-7.63 (m, 2H), 7.64-7.77 (m, 4H).

(Known compound, CAS 2920-38-9, see: Garel, Claire et al. Applied Catalysis, A: General, 2015, 504, 272-286)

3-Methyl-biphenyl (Table2, entry 6)

¹H NMR (300 MHz, CDCl₃): δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.42 (m, 4H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.16 (d, *J* = 7.4 Hz, 1H), 2.42 (s, 3H).

(Known compound, CAS 643-93-6, see: Giacalone, Francesco et al. ACS Nano, 2016 10(4), 4627-4636)

2-Methyl-biphenyl (Table2, entry 7)

¹H NMR (300 MHz, DMSO): δ 7.45 (t, J = 7.3 Hz, 2H), 7.41-7.22 (m, 6H), 7.22-7.15 (m, 1H), 2.23 (s, 3H).

(Known compound, CAS 643-58-3, see: Oncel, Nurdal et al. Journal of

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is \bigcirc The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Organometallic Chemistry, 2016, 811, 81-90)