Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Fabricating MnO/C composite utilizing pitch as soft carbon source for rechargeable

Li-ion batteries

Xin-Yi Zhao, Xue Bai, Wei Yang, Dong Shen, Huan Yang, Ning Lun, Yong-Xin Qi* and

Yu-Jun Bai*

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry

of Education), Shandong University, Jinan 250061, PR China

* E-mail address: byj97@126.com (Y.-J. Bai); gyx66@sdu.edu.cn (Y. X. Qi).

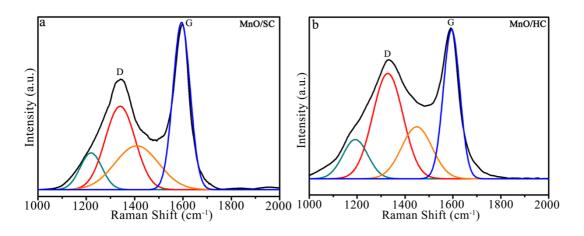


Fig. S1 Raman spectra of MnO/SC (a), and MnO/HC (b).

Table. S1 Capacity retention at varied current densities (mA g⁻¹) for MnO/SC and MnO/HC

Sample	Capacity retention at varied current densities					
	100	200	400	800	1600	100
MnO/SC	100%	83%	67%	50%	33%	108%
MnO/HC	100%	81%	42%	9%	1%	98%

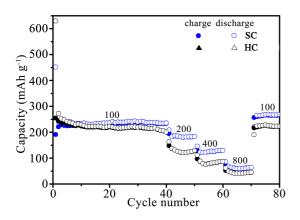


Fig. S2 Cycling performance at 100 mA g⁻¹ and rate performance for the SC derived from

pitch and HC derived from glucose.

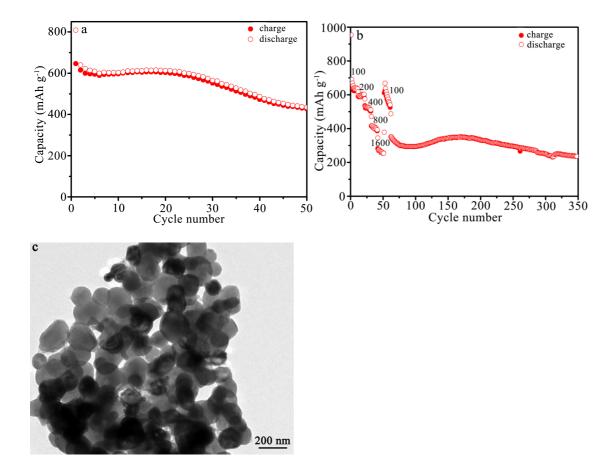


Fig. S3 Cycling performance at 100 mA g^{-1} (a), rate performance and long-term cycling performance at 500 mA g^{-1} after the rate performance test (b), and TEM image (c) for the

MnO/SC composite fabricated at 750 °C with the same amount of pitch and manganese oxides as the MnO/SC prepared at 600 °C.

1. Estimation of the theoretical capacity of MnO/C composites

Theoretical capacity (MnO/C) = Theoretical capacity of carbon \times mass fraction of carbon +

Theoretical capacity of MnO \times mass fraction of MnO

According to the TG curves, the weight percent is 88.8 wt% for MnO and 11.2 wt% for carbon in MnO/SC, and is 95.1% for MnO and 4.9% for carbon in MnO/HC.

The theoretical capacity of MnO/SC= $372 \times 11.2\% + 756 \times 88.8\% = 710$ mAh g⁻¹

The theoretical capacity of MnO/HC= $372 \times 4.9\% + 756 \times 95.1\% = 737$ mAh g⁻¹