An efficient five-component synthesis of thio ether containing dihydropyrano[2,3c]pyrazoles : A green domino strategy

Vediyappan Ramesh^{a,b}, Sivakumar Shanmugam^b, Natarajan Savitha Devi^{a,*}

^a Department of Chemistry, Arul Anandar College (Autonomous), Madurai – 625 514, India
^b Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India
E-mail: Natarajan Savitha Devi - <u>savitha.devi@gmail.com</u>
E-mail: Sivakumar Shanmugam - <u>shivazzen@gmail.com</u>

*Corresponding author

S. No.	Table of contents	Page No
1	Experimental section	4
2	Characterization data for compounds 6a-z	5-13
3	Characterization data for compounds A1, B, I, II, III	14
4	¹ H & ¹³ C NMR spectra of compound 6a	15
5	DEPT-135 & ESI mass spectra of compound 6a	16
6	¹ H & ¹³ C NMR spectra of compound 6b	17
7	¹ H & ¹³ C NMR spectra of compound 6c	18
8	ESI mass spectra of compound 6c	19
9	¹ H & ¹³ C NMR spectra of compound 6d	20
10	ESI mass spectra of compound 6d	21
11	¹ H & ¹³ C NMR spectra of compound 6e	22
12	ESI Mass spectra of compound 6e	23
13	¹ H & ¹³ C NMR spectra of compound 6f	24
14	¹ H & ¹³ C NMR spectra of compound 6g	25
15	¹ H & ¹³ C NMR spectra of compound 6h	26
16	ESI mass spectra of compound 6h	27
17	¹ H & ¹³ C NMR spectra of compound 6i	28
18	¹ H & ¹³ C NMR spectra of compound 6 j	29

19	¹ H & ¹³ C NMR spectra of compound 6k	30
20	¹ H & ¹³ C NMR spectra of compound 6 l	31
21	ESI Mass spectra of compound 61	32
22	¹ H & ¹³ C NMR spectra of compound 6m	33
23	¹ H & ¹³ C NMR spectra of compound 6n	34
24	DEPT-135 & ESI mass spectra of compound 6n	35
26	¹ H & ¹³ C NMR spectra of compound 60	36
27	¹ H & ¹³ C NMR spectra of compound 6p	37
28	¹ H & ¹³ C NMR spectra of compound 6q	38
29	DEPT-135 & C-H COSY spectra of compound 6q	39
30	H-H COSY & HMBC spectra of compound 6q	40
31	ESI mass spectra of compound 6q	41
32	¹ H & ¹³ C NMR spectra of compound 6r	42
33	ESI mass spectra of compound 6r	43
34	¹ H & ¹³ C NMR spectra of compound 6s	44
35	¹ H & ¹³ C NMR spectra of compound 6t	45
36	ESI mass spectra of compound 6t	46
37	¹ H & ¹³ C NMR spectra of compound 6u	47
38	¹ H & ¹³ C NMR spectra of compound 6v	48
39	ESI mass spectra of compound 6v	49
40	¹ H & ¹³ C NMR spectra of compound 6w	50
41	ESI mass spectra of compound 6w	51
42	¹ H & ¹³ C NMR spectra of compound 6x	52
43	ESI mass spectra of compound 6x	53
44	¹ H & ¹³ C NMR spectra of compound 6y	54
45	ESI mass spectra of compound 6y	55
46	¹ H & ¹³ C NMR spectra of compound 6z	56
47	ESI mass spectra of compound 6z	57

48	¹ H & ¹³ C NMR spectra of compound A_1	58
49	DEPT-135 & HRMS spectrum of compound A1	59
50	¹ H & ¹³ C NMR spectra of compound B	60
51	DEPT-135 & HRMS spectrum of compound B	61
52	¹ H & ¹³ C NMR spectra of compound I	62
53	DEPT-135 spectrum of compound I	63
54	¹ H & ¹³ C NMR spectra of compound II	64
55	DEPT-135 & HRMS spectrum of compound II	65
56	¹ H & ¹³ C NMR spectra of compound III	66
57	DEPT-135 spectrum of compound III	67

Experimental Section

General Remarks:

The melting points were measured in open capillary tubes and are uncorrected. The reaction was monitored by TLC on Merck GF 254 with detection by UV light for visualization using a mixture of petroleum ether (60-80 °C) and ethyl acetate (7:3) as the eluent. Nuclear Magnetic Resonance (¹H and ¹³C NMR) spectra were recorded on a Bruker (Advance) 300 MHz spectrometer in DMSO-d₆ using TMS as an internal standard. Chemical shifts are reported in parts per million (δ), coupling constants (*J* values) are reported in Hertz (Hz) and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), (multiplet). ¹³C NMR spectra were routinely run with broadband decoupling. Absorption spectra studies of all samples were recorded on Agilent Technologies 8453 spectrophotometer by taking the solution in a 1 cm path length quartz cell in the wavelength range of 200-1100 nm. Elemental analyses were carried out with Perkin-Elmer 2400 series II analyzer. Electrospray ionization mass spectrometry (ESI-MS) was recorded in LCQ Fleet, Thermo Fisher Instruments Limited, US and High resolution mass spectra were recorded on a Water Q-TOF micro mass spectrometer using ESI mode.

General procedure for the synthesis of pyrano[2,3-*c*]pyrazole derivatives (6)

A mixture of commercially available ethyl 4-chloro-3-oxobutanoate 1 (1.0 equiv.) and the substituted benzenethiol 2 (1.1 equiv.) was heated at 120 °C for 10 minutes under solvent free conditions. TLC was used to check the reaction, followed by the addition of phenylhydrazine 3 (1.1 equiv.) at 120 °C and the same temperature was maintained for 5 minutes. After TLC monitoring, subsequent additions of the aldehyde 4 (1.1 equiv.) and malononitrile 5 (1.1 equiv.) were performed under solvent free conditions. Completion of the reaction was monitored using TLC. The reaction mixture was cooled to room temperature, followed by addition of ethanol (5 mL). The product appeared as a solid, through trituration with ethanol, was filtered and washed with another 2 mL of EtOH to remove the other impurities. Finally, the product 6 was dried under reduced pressure and was pure enough for the spectral investigations.

Characterization data for compounds (6a-z)

6-amino-4-(2-ethoxyphenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5-carbonitrile (6a). Isolated as white solid; $R_f = 0.41$ (3:7 EtOAc/pet. ether); mp 180–182 °C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.34 – 7.12 (m, 10H), 6.94 – 6.84 (m, 2H), 4.87 (s, 1H), 3.91 – 3.84 (m, 3H), 3.47 (d, J = 13.8 Hz, 1H), 1.14 (t, J = 6.9 Hz,

3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.4, 157.0, 145.1, 145.0, 137.9, 136.2, 130.9, 129.8, 129.3, 129.3, 129.1, 126.9, 126.6, 120.8, 120.6, 112.9, 99.2, 63.8, 57.9, 33.0, 30.1, 14.9; ESI Calcd *m*/*z* 480, Found 479 [(M-1)]⁺; Anal. Calcd for: C₂₈H₂₄N₄O₂S: C, 69.98; H, 5.03; N, 11.66; O, 6.66%; Found C, 69.95; H, 5.06; N, 11.69%; One of the –SCH₂ proton was merged with –CH₂ of –OEt peak.

6-amino-4-(4-chlorophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5-carbonitrile (6b). Isolated as white solid; $R_f = 0.42$ (3:7 EtOAc/pet. ether); mp 200–202 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.73 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.38 – 7.34 (m, 3H), 7.29 – 7.16 (m, 9H), 4.68 (s, 1H), 3.91 (d, J = 13.8 Hz, 1H), 3.42 (d, J = 14.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.2, 145.7, 145.0, 143.1, 138.1, 136.3, 132.7, 130.6, 130.2, 129.8, 129.4, 127.5, 127.1, 121.2, 120.6, 99.0, 58.6, 37.2, 30.7; Anal. Calcd for: C₂₆H₁₉ClN₄OS: C, 66.31; H, 4.07; N, 11.90%; Found C, 66.34; H, 4.04; N, 11.93%.

6-amino-4-(4-methoxyphenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3*c*]pyrazole-5-carbonitrile (6c). Isolated as white solid; R_f = 0.37 (3:7 EtOAc/pet. ether); mp 196–198

^oC; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.73 (d, *J* = 8.1 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.36 – 7.13

(m, 12H), 6.86 (d, J = 8.4 Hz, 2H), 4.60 (s, 1H), 3.90 (d, J = 14.1 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.0, 159.2, 145.8, 144.9, 138.1, 136.3, 136.0, 130.2, 129.8, 127.5, 127.1, 121.2, 120.7, 114.8, 99.7, 59.4, 55.9, 37.0, 30.7; ESI Calcd *m*/*z* 466, found 465 [(M-1)]⁺; Anal. Calcd for: C₂₇H₂₂N₄O₂S: C, 69.51; H, 4.75; N, 12.01%; Found C, 69.54; H, 4.73; N, 12.04%; One of the –SCH₂ proton was merged with water peak. **6-amino-1-phenyl-3-((phenylthio)methyl)-4-(p-tolyl)-1,4-dihydropyrano**[2,3-*c*]pyrazole-5carbonitrile (6d). Isolated as white solid; $R_f = 0.46$ (3:7 EtOAc/pet. ether); mp 178–180 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 7.73 (d, J = 8.1 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.36 – 7.21 (m, 10H), 7.11 (s, 2H), 4.60 (s, 1H), 3.90 (d, J = 13.8 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.0, 145.7, 144.9, 141.0, 138.1, 137.2, 136.3, 130.2, 130.0, 129.8, 128.6, 127.4, 127.1, 121.2, 120.7, 99.6, 59.2, 37.4, 30.7, 21.6; ESI Calcd *m*/*z* 450, found 451 [(M+1)]⁺; Anal. Calcd for: C₂₇H₂₂N₄OS: C, 71.98; H, 4.92; N, 12.44%; Found: C, 71.95; H,

4.95; N, 12.47%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(4-cyanophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5carbonitrile (6e). Isolated as white solid; $R_f = 0.30$ (3:7 EtOAc/pet. ether); mp 194–196 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 7.79 – 7.72 (m, 4H), 7.52 – 7.45 (m, 4H), 7.40 – 7.18 (m, 8H), 4.80 (s, 1H), 3.91 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.4, 149.6, 145.6, 145.2, 138.0, 136.2, 133.5, 130.2, 129.9, 129.8, 127.6, 127.1, 121.3, 120.5, 119.6, 110.9, 98.5, 58.0, 37.8, 30.7; ESI Calcd *m*/*z* 461, found 460 [(M-1)]⁺; Anal. Calcd for: C₂₇H₁₉N₅OS: C, 70.26; H, 4.15; N, 15.17%; Found C, 70.28; H, 4.19; N, 15.20%; One of the –SCH₂

proton was merged with water peak.

6-amino-4-(4-ethoxyphenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6f). Isolated as white solid; $R_f = 0.44$ (3:7 EtOAc/pet. ether); mp 188–190 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, J = 7.8 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.36 – 7.11 (m, 10H), 6.84 (d, J = 8.1 Hz, 2H), 4.58 (s, 1H), 3.98 – 3.87 (m, 3H), 1.29 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.0, 158.5, 145.8, 144.9, 138.1, 136.3, 135.9, 130.3, 129.8, 127.5, 127.1, 121.2, 115.2, 99.7, 39.5, 37.0, 30.7, 15.5; Anal. Calcd for: C₂₈H₂₄N₄O₂S: C, 69.98; H, 5.03; N, 11.66%; Found C, 69.95; H, 5.06; N, 11.69%; One of the ethyl –

SCH₂ proton was merged with ethyl –CH₂ and another one –SCH₂ proton was merged with water peak.

6-amino-4-(3-nitrophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5carbonitrile (6g). Isolated as white solid; $R_f = 0.32$ (3:7 EtOAc/pet. ether); mp 192–194 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 8.12 (d, J = 9.6 Hz, 2H), 7.72 (d, J = 7.5 Hz, 3H), 7.63 (t, J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.26 – 7.15 (m, 5H), 4.93 (s, 1H), 3.92 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.4, 148.8, 146.4, 145.6, 145.2, 138.0, 136.2, 135.8, 131.1, 130.2, 129.7, 127.6, 127.0, 123.3, 121.3, 120.5, 98.5, 58.1, 37.4, 30.7; Anal. Calcd for: C₂₆H₁₉N₅O₃S: C, 64.85; H, 3.98; N, 14.54%; Found C, 64.89; H,

4.01; N, 14.56%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(3-chlorophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5-carbonitrile (6h). Isolated as white solid; $R_f = 0.37$ (3:7 EtOAc/pet. ether); mp 178–180 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.43 – 7.40 (m, 1H), 7.37 – 7.16 (m, 11H), 5.19 (s, 1H), 3.90 (d, J = 13.7 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 164.6, 149.5, 144.6, 142.1, 140.3, 137.4, 136.0, 134.7, 134.3, 133.9, 133.8, 132.7, 131.6, 131.1, 125.3, 124.4, 102.5, 61.6, 39.1, 34.7; ESI Calcd *m*/*z* 470, Found 471 [(M+1)]⁺; Anal. Calcd for: C₂₆H₁₉ClN₄OS: C, 66.31; H, 4.07; Cl, 7.53; N, 11.90%;

Found C, 66.35; H, 4.10; N, 11.89%; One of the –SCH₂ proton was merged with water peak.

$6-amino-4-(2,4-dichlorophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano \cite{2,3-dichlorophenyl})-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano \cite{2,3-dichlorophenyl})-1-phenyl-3-((phenylthio)methyl)-1-phenyl-3-((phenylthio)methyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydrophenyl-3-((phenylthio)methyl)-1,4-dichlorophenyl-3-((phenylthio)methyl)-1-phenyl-3-((phenylthio)methyl)-1-phenylthiomethylaphenyl-3-((phenylthio)methylaphenylthiomethylaphenylthiomethylaphenylthiomethylaphenylthiomethylaphenylthiomethylaphenylthiomethylaphenylthiomethylaphenylthiomethylap$

c]pyrazole-5-carbonitrile (6i). Isolated as white solid; $R_f = 0.40$ (3:7 EtOAc/pet. ether); mp 204–206

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, J = 7.8 Hz, 2H), 7.56-7.47 (m, 4H), 7.36 (s, 4H), 7.28 – 7.16 (m, 5H), 5.20 (s, 1H), 3.90 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 164.7, 149.5, 149.4, 143.9, 142.1, 140.3, 138.3, 137.5, 137.4, 134.3, 133.7, 133.6, 132.9, 131.7, 131.4, 125.3, 124.3, 102.1, 61.2, 38.7, 34.7; Anal. Calcd for: C₂₆H₁₈Cl₂N₄OS: C, 61.79; H, 3.59; N, 11.09%; Found C, 61.82; H, 3.62; N, 11.13%; One of the

-SCH₂ proton was merged with water peak.

6-amino-1-phenyl-3-((phenylthio)methyl)-4-(o-tolyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (6j). Isolated as white solid; $R_f = 0.40$ (3: EtOAc/pet. ether); mp 170–172 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ: 7.76 (d, J = 7.5 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.39 – 7.10 (m, 12H), 5.02 (s, 1H), 3.90 (d, J = 13.5 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ: 159.3, 144.8, 140.9, 137.4, 135.5, 129.5, 123.0, 128.8, 127.2, 126.9, 126.8, 126.3, 120.5, 120.0, 98.7, 58.0, 33.4, 30.0, 19.1; Anal. Calcd for: C₂₇H₂₂N₄OS: C, 71.98; H, 4.92; N, 12.44%; Found C, 71.96;

H, 4.95; N, 12.47%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(4-nitrophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5carbonitrile (6k). Isolated as white solid; $R_f = 0.32$ (3:7 EtOAc/pet. ether); mp 208–210 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 8.16 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.56 – 7.48 (m, 5H), 7.41 – 7.34 (m, 2H), 7.28 – 7.16 (m, 5H), 4.88 (s, 1H), 3.92 (d, J = 13.8 Hz, 1H), 3.50 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 159.7, 151.0, 146.9, 145.0, 144.5, 137.4, 135.6, 129.5, 129.1, 126.9, 129.1, 124.0, 120.7, 119.7, 97.7, 57.4, 36.9, 30.1; Anal. Calcd for: C₂₆H₁₉N₅O₃S: C, 64.85; H, 3.98; N, 14.54%; Found C, 64.88; H, 3.96; N, 14.57%.

6-amino-4-(4-fluorophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6l). Isolated as white solid; $R_f = 0.43$ (3:7 EtOAc/pet. ether); mp 180–182 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.73 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.37 – 7.24 (m, 10H), 7.21 – 7.10 (m, 3H), 4.69 (s, 1H), 3.91 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 159.4, 145.0, 144.3, 139.6, 137.4, 135.6, 130.0, 129.9, 129.5, 129.1, 126.8, 126.4, 120.5, 119.9, 115.6, 15.3, 98.6, 58.2, 36.4, 30.0; ESI Calcd *m*/*z* 454, Found 453 [(M-1)]⁺; Anal. Calcd for: C₂₆H₁₉FN₄OS: C, 68.71; H, 4.21; N, 12.33%; Found C, 68.75; H,

4.24; N, 12.36%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(4-bromophenyl)-1-phenyl-3-((phenylthio)methyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6m). Isolated as white solid; $R_f = 0.43$ (3:7 EtOAc/pet. ether); mp 196–198 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.73 (d, J = 8.1 Hz, 2H), 7.49 (t, J = 6.6 Hz, 3H), 7.37 – 7.20 (m, 10H), 4.67 (s, 1H), 3.91 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 159.5, 145.0, 144.3, 142.8, 137.4, 135.6, 131.7, 130.3, 129.5, 129.1, 126.8, 126.4, 120.6, 119.9, 98.3, 57.9, 36.6, 30.1; Anal. Calcd for: C₂₆H₁₉BrN₄OS: C, 60.59; H, 3.72; N, 10.87%; Found C, 60.62; H, 3.75; N, 10.85%; One of the –SCH₂ proton was merged with water peak.

6-amino-3-(((4-chlorophenyl)thio)methyl)-4-(4-cyanophenyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (6n). Isolated as white solid; $R_f = 0.31$ (3:7 EtOAc/pet. ether); mp 200–202

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.79 (d, *J* = 7.8 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.56 – 7.50 (m, 4H), 7.41 – 7.34 (m, 5H), 7.27 (d, *J* = 8.1 Hz, 2H), 4.87 (s, 1H), 3.95 (d, *J* = 14.1 Hz, 1H), 3.53 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 159.6, 149.0, 144.5, 137.3, 134.6, 132.8, 131.1, 130.6, 129.5, 129.2, 128.9, 126.9, 120.7, 119.8, 118.9, 110.2, 97.7, 57.3, 37.0, 29.9; ESI Calcd *m*/*z* 495, Found 494 [(M-1)]⁺; Anal. Calcd for: C₂₇H₁₈ClN₅OS: C, 65.38; H, 3.66; N, 14.12%; Found C, 65.41; H, 3.69; N,

14.15%.

6-amino-3-(((4-chlorophenyl)thio)methyl)-4-(4-fluorophenyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (60). Isolated as white solid; $R_f = 0.40$ (3:7 EtOAc/pet. ether); mp 182–184

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, *J* = 8.1 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.25 (m, 10H), 7.14 (t, *J* = 8.7 Hz, 2H), 4.73 (s, 1H), 3.92 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 159.4, 144.7, 144.3, 139.6, 137.4, 134.7, 131.1, 130.6, 130.0, 129.9, 129.5, 128.9, 126.8, 120.6, 119.9, 115.6, 115.4, 98.6, 58.2, 36.3, 30.0; Anal. Calcd for: C₂₆H₁₈ClFN₄OS: C, 63.87; H, 3.71; N, 11.46%; Found C, 63.89; H, 3.74; N, 11.44%; One of the –SCH₂ proton was merged with water peak.

6-amino-3-(((4-chlorophenyl)thio)methyl)-4-(4-ethoxyphenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6p). Isolated as white solid; R_f = 0.43 (3:7 EtOAc/pet. ether); mp 184–186

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, *J* = 7.8 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.20 (m, 9H), 7.13 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 4.62 (s, 1H), 4.01 – 3.88 (m, 3H), 1.30 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.0, 158.5, 145.5, 144.9, 138.1, 135.8, 135.5, 131.7, 131.3, 130.2, 129.7, 127.5, 121.2, 120.7, 115.2, 99.7, 63.8, 59.4, 37.0, 30.7, 15.5; Anal. Calcd for: C₂₈H₂₃ClN₄O₂S: C, 65.30; H, 4.50; N, 10.88%; Found C, 65.32; H, 4.54; N, 10.86%; One of the

ethyl –SCH₂ proton was merged with ethyl –CH₂ and another one –SCH₂ proton was merged with water peak.

6-amino-3-(((4-chlorophenyl)thio)methyl)-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6q). Isolated as white solid; $R_f = 0.31$ (3:7 EtOAc/pet. ether); mp 186–188

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 8.14 (s, 1H), 7.78 (t, *J* = 9.6 Hz, 3H), 7.65 (t, *J* = 8.7 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.44 (s, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.01 (s, 1H), 3.97 (d, *J* = 13.8 Hz, 1H), 3.61 (d, *J* = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 158.7, 147.1, 144.7, 143.6, 143.5, 136.3, 134.0, 133.6, 130.1, 129.6, 129.4, 128.5, 127.8, 125.9, 121.6, 121.5, 119.7, 118.7, 96.8, 56.5, 35.7, 29.0; ESI Calcd *m*/*z* 515, found 514 [(M-1)]⁺; Anal. Calcd for:

C₂₆H₁₈ClN₅O₃S: C, 60.52; H, 3.52; N, 13.57%; Found C, 60.56; H, 3.50; N, 13.61%.

6-amino-4-(4-bromophenyl)-3-(((4-chlorophenyl)thio)methyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6r). Isolated as white solid; R_f = 0.45 (3:7 EtOAc/pet. ether); mp 208–210

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.72 (d, J = 6.9 Hz, 2H), 7.50 (d, J = 6.3 Hz, 5H), 7.34 – 7.21 (m, 8H), 4.71 (s, 1H), 3.92 (d, J = 13.8 Hz, 1H), 3.46 (d, J = 14.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO- d₆) δ : 160.2, 145.4, 145.1, 143.5, 132.4, 131.8, 131.4, 131.0, 130.2, 129.7, 127.6, 121.3, 120.6, 99.0, 58.6, 37.3, 30.7; ESI Calcd *m*/*z* 548, found 549 [(M+1)]⁺; Anal. Calcd for: C₂₆H₁₈BrClN₄OS: C, 56.79; H, 3.30; N, 10.19%; Found C, 56.82; H, 3.34; N, 10.21%.

6-amino-3-(((2-bromophenyl)thio)methyl)-4-(2-ethoxyphenyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (6s). Isolated as white solid; $R_f = 0.38$ (3:7 EtOAc/pet. ether); mp 184–186

°C; ¹H NMR (300 MHz, DMSO-d₆) δ: 7.75 (d, *J* = 7.2 Hz, 2H), 7.59 – 7.48 (m, 4H), 7.35 – 7.08 (m, 8H), 6.94 – 6.84 (m 2H), 4.94 (s, 1H), 3.96 – 3.86 (m, 3H), 1.15 (t, *J* = 6.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ: 160.9, 157.3, 145.4, 144.6, 138.2, 133.4, 131.1, 130.2, 130.3, 130.2, 129.5, 129.5, 128.9, 128.6, 127.7, 127.4, 122.6, 121.3, 121.0, 113.2, 99.7, 64.1, 58.0, 29.5, 15.3; Anal. Calcd for: C₂₈H₂₃BrN₄O₂S: C, 60.11; H,

4.14; Br, N, 10.01%; Found C, 60.14; H, 4.18; Br, N, 10.03%; One of the ethyl –SCH₂ proton was merged with ethyl –CH₂ and another one –SCH₂ proton was merged with water peak.

6-amino-3-(((2-bromophenyl)thio)methyl)-4-(4-nitrophenyl)-1-phenyl-1,4-dihydropyrano[2,3*c*]pyrazole-5-carbonitrile (6t). Isolated as white solid; $R_f = 0.30$ (3:7 EtOAc/pet. ether); mp 192–194

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 8.11 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 7.8 Hz, 2H), 7.555 – 7.38 (m, 10H), 7.06 (t, J = 6.0 Hz, 1H), 4.93 (s, 1H), 3.96 (d, J = 13.8 Hz, 1H), 3.70 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.4, 151.7, 147.6, 145.3, 144.9, 138.0, 197.8, 133.4, 130.2, 130.1, 128.9, 127.8, 127.7, 124.7, 122.7, 121.4, 120.3, 98.6, 58.0, 37.6, 29.7; ESI Calcd *m*/*z* 559, found 558 [(M-1)]⁺; Anal. Calcd for:

C₂₆H₁₈BrN₅O₃S: C, 55.72; H, 3.24; N, 12.50%; Found C, 55.75; H, 3.21; N, 12.54%.

6-amino-3-(((2-bromophenyl)thio)methyl)-4-(4-fluorophenyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (6u). Isolated as white solid; $R_f = 0.43$ (3:7 EtOAc/pet. ether); mp 180–182

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.74 (d, J = 7.8 Hz, 2H), 7.59 – 7.48 (m, 4H), 7.35 – 7.28 (m, 6H), 7.14 – 7.06 (m, 3H), 4.73 (s, 1H), 3.95 (d, J = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.1, 145.0, 144.9, 140.2, 138.1, 137.9, 133.5, 130.7, 130.3, 130.0, 129.0, 127.9, 127.6, 122.9, 121.4, 120.7, 116.4, 116.1, 112.9, 99.5, 58.9, 37.1, 29.8; Anal. Calcd for: C₂₆H₁₈BrFN₄OS: C, 58.54; H, 3.40; N, 10.50%; Found

C, 58.57; H, 3.44; N, 10.52%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(4-bromophenyl)-3-(((2-bromophenyl)thio)methyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (6v). Isolated as white solid; $R_f = 0.38$ (3:7 EtOAc/pet. ether); mp 196—198

°C; ¹H NMR (300 MHz, DMSO-d₆) δ : 7.74 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 3.6 Hz, 2H), 7.53 – 7.46 (m, 4H), 7.37 – 7.31 (m, 4H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.11 – 7.06 (m, 1H), 4.71 (s, 1H), 3.96 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.2, 145.0, 144.8, 143.4, 138.0, 137.8, 135.9, 133.4, 132.4, 130.9, 130.2, 130.0, 128.9, 128.2, 127.9, 127.6, 122.8, 121.3, 120.6, 112.9, 99.1, 58.5, 37.3, 29.7; ESI Calcd *m*/*z* 592, found 593 [(M+1)]⁺; Anal. Calcd for: C₂₆H₁₈Br₂N₄OS: C, 52.54; H, 3.05;

N, 9.43%; Found C, 52.52; H, 3.09; N, 9.47%; One of the -SCH₂ proton was merged with water peak.

6-amino-3-(((2-bromophenyl)thio)methyl)-4-(4-cyanophenyl)-1-phenyl-1,4-dihydropyrano[2,3c]pyrazole-5-carbonitrile (6w). Isolated as white solid; $R_f = 0.30$ (3:7 EtOAc/pet. ether); mp 194–196

°C; ¹H NMR (300 MHz, DMSO-d₆) δ: 7.76 – 7.72 (m, 4H), 7.57 – 7.45 (m, 5H), 7.38 – 7.32 (m, 4H), 7.10 – 7.05 (m, 1H), 4.84 (s, 1H), 3.95 (d, *J* = 13.8 Hz, 1H), 3.65 (d, *J* = 13.8 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ: 160.4, 149.6, 145.3, 144.9, 138.0, 137.8, 133.5, 130.2, 129.8, 129.1, 129.0, 127.9, 127.7, 122.9, 121.5, 120.3, 119.6, 111.0, 98.7, 58.1, 37.8, 29.8; ESI Calcd *m*/*z* 539, found 538 [(M-1)]⁺; Anal. Calcd for: C₂₇H₁₈BrN₅OS: C, 60.01; H, 3.36; N, 12.96%; Found C, 60.04; H, 3.38;

N, 12.94%.

6-amino-4-(4-nitrophenyl)-1-phenyl-3-((p-tolylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5carbonitrile (6x). Isolated as white solid; $R_f = 0.29$ (3:7 EtOAc/pet. ether); mp 210–212 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 8.16 (d, J = 8.7 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.54 – 7.47 (m, 4H), 7.40 – 7.35 (m, 3H), 7.12 (d, J=8.1 Hz, 2H), 7.06 (d, J=8.4 Hz, 2H), 4.80 (s, 1H), 3.85 (d, J = 13.8 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.4, 151.7, 147.5, 145.8, 145.1, 138.0, 137.0, 132.3, 130.7, 130.4, 130.2, 130.1, 127.6, 124.7, 121.3, 120.4, 98.4, 57.9, 37.5, 31.4, 21.4; ESI Calcd *m*/*z* 495, found 494 [(M-1)]⁺; Anal. Calcd for: C₂₇H₂₁N₅O₃S: C, 65.44; H, 4.27; N, 14.13%; Found

C, 65.48; H, 4.31; N, 14.09%; One of the –SCH₂ proton was merged with water peak.

6-amino-4-(4-fluorophenyl)-1-phenyl-3-((p-tolylthio)methyl)-1,4-dihydropyrano[2,3-*c*]pyrazole-5carbonitrile (6y). Isolated as white solid; $R_f = 0.34$ (3:7 EtOAc/pet. ether); mp 186–188 °C; ¹H NMR

(300 MHz, DMSO-d₆) δ : 7.71 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.35 – 7.25 (m, 6H), 7.16 – 7.07 (m, 5H), 4.60 (s, 1H), 3.83 (d, J = 13.2 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.1, 145.8, 144.9, 140.3, 138.1, 137.0, 132.4, 130.8, 130.4, 130.2, 127.5, 121.2, 120.6, 116.3, 116.0, 99.3, 59.0, 37.0, 31.5, 21.4; ESI Calcd m/z 468, found 467 [(M-1)]⁺; Anal. Calcd for: C₂₇H₂₁FN₄OS: C, 69.21; H, 4.52; N, 11.96%; Found C, 69.25; H, 4.56; N, 11.98%; One of the –SCH₂

proton was merged with water peak.

6-amino-4-(4-bromophenyl)-1-phenyl-3-((p-tolylthio)methyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (6z). Isolated as white solid; $R_f = 0.34$ (3:7 EtOAc/pet. ether); mp 206–208 °C; ¹H

NMR (300 MHz, DMSO-d₆) δ : 7.71 (d, J = 7.5 Hz, 2H), 7.51 – 7.46 (m, 4H), 7.36 – 7.29 (m, 3H), 7.20 – 7.07 (m, 7H), 4.59 (s, 1H), 3.84 (d, J = 13.8 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ : 160.2, 145.8, 145.0, 143.6, 138.1, 137.0, 132.4, 131.0, 130.9, 130.5, 130.2, 127.5, 121.2, 120.6, 98.9, 58.6, 37.2, 31.5, 21.4; ESI Calcd *m*/*z* 528, found 527 [(M-1)]⁺; Anal. Calcd for: C₂₇H₂₁BrN₄OS: C, 61.25; H, 4.00; N, 10.58%; Found C, 61.28; H, 4.04; N, 10.61%; One of the –SCH₂ proton

was merged with water peak.

0.88 (3:7 EtOAc/pet. ether); mp 126–128 °C; ¹H NMR (300 MHz, CDCl₃) δ : 12.21 (s, 2H), 4.25 (q, *J* = 7.1 Hz, 4H), 3.18 (s, 4H), 1.32 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.3, 168.4, 93.2, 60.7, 28.5, 14.2; HRMS (ESI) m/z calcd for C₁₂H₁₆O₆ 257.1025 [M + H] ⁺, found

 $257.1026 [M + H]^+$.

(E)-4-((2-phenylhydrazono)methyl)benzonitrile (B). Isolated as yellowish solid; $R_f = 0.58$ (3:7)

EtOAc/pet. ether); mp 152–154 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.01 (s, 1H), 7.67 (d, J = 6.3 Hz, 2H), 7.57 (d, J = 8.1 Hz, 3H), 7.27 (d, J = 7.1 Hz, 2H), 7.11 (d, J = 6.7 Hz, 2H), 6.91 (t, J = 6.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 144.2, 140.3, 134.7, 132.8, 129.8, 126.6, 121.4, 119.6,

113.4, 111.1; HRMS (ESI) m/z calcd for $C_{14}H_{11}N_3$ 222.1031 [M + H]⁺, found 221.1028 [M + H]⁺.

Ethyl 4-((4-chlorophenyl)thio)-3-oxobutanoate (I). Isolated as yellowish liquid; $R_f = 0.75$ (3:7

EtOAc/pet. ether); ¹H NMR (300 MHz, CDCl₃) δ: 7.29 – 7.26 (m, 4H), 4.21 (q, *J*= 7.1 Hz, 2H), 3.80 (s, 2H), 3.62 (s, 2H), 1.28 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 197.9, 167.3, 133.8, 132.9, 131.7, 129.8, 62.0, 46.9, 44.4, 14.4.

5-(((4-chlorophenyl)thio)methyl)-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (II). Isolated as brown

solid; $R_f = 0.81$ (3:7 EtOAc/pet. ether); mp 89–91 °C; ¹H NMR (300 MHz, CDCl₃) δ : 7.72 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.7 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.19 (t, J = 7.2 Hz, 1H), 3.90 (s, 2H), 3.54 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 170.6, 155.8, 138.1, 134.0, 132.7, 132.2,

129.9, 129.3, 125.8, 119.4, 40.8, 34.8; HRMS (ESI) m/z calcd for $C_{16}H_{13}ClN_2OS$ 317.0515 [M + H]⁺, found 317.0514 [M + H]⁺.

2-(4-cyanobenzylidene)malononitrile (III). Isolated as white solid; $R_f = 0.85$ (3:7 EtOAc/pet. ether);

mp 154–156 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.01 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 7.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃+DMSO-d₆) δ : 158.6, 134.8, 133.4, 133.3, 131.2, 131.1, 117.8, 117.1, 113.3, 112.2, 86.5. One of the proton was merged with aromatic proton.

Fig.2. ¹³C-NMR spectrum of **5a**

Fig.4. ESI Mass spectra of compound 6a

Fig.5. ¹H-NMR spectrum of **6b**

Fig.6. ¹³C-NMR spectrum of **6b**

Fig.8. ¹³C-NMR spectrum of **6c**

Fig.9. ESI Mass spectra of compound 6c

Fig.10. ¹H-NMR spectrum of **6d**

Fig.11. ¹³C-NMR spectrum of **6d**

Fig.12. ESI Mass spectra of compound 6d

Fig.13. ¹H-NMR spectrum of **6e**

Fig.14. ¹³C-NMR spectrum of **6e**

Fig.15. ESI Mass spectra of compound 6e

Fig.16. ¹H-NMR spectrum of **6f**

Fig.17. ¹³C-NMR spectrum of **6f**

Fig.18. ¹H-NMR spectrum of **6g**

Fig.19. ¹³C-NMR spectrum of **6g**

Fig.20. ¹H-NMR spectrum of **6h**

Fig.21. ¹³C-NMR spectrum of **6h**

Fig.22. ESI Mass spectra of compound 6h

Fig.23. ¹H-NMR spectrum of **6i**

Fig.24. ¹³C-NMR spectrum **6i**

Fig.25. ¹H-NMR spectrum of **6**j

Fig.26. ¹³C-NMR spectrum of **6j**

Fig.27. ¹H-NMR spectrum of **6k**

Fig.28. ¹³C-NMR spectrum of **6k**

Fig.29. ¹H-NMR spectrum of **6**l

Fig.30. ¹³C-NMR spectrum of **6**l

Fig.31. ESI Mass spectra of compound 61

Fig.32. ¹H-NMR spectrum of **6m**

Fig.33. ¹³C-NMR spectrum of **6m**

Fig.34. ¹H-NMR spectrum of **6n**

Fig.35. ¹³C-NMR spectrum of **6n**

Fig.36. DEPT-135 spectrum of 6n

Fig.37. ESI Mass spectra of compound 6n

Fig.38. ¹H-NMR spectrum of **60**

Fig.39. ¹³C-NMR spectrum of **60**

Fig.40. ¹H-NMR spectrum of **6p**

Fig.41. ¹³C-NMR spectrum of **6p**

Fig.42. ¹H-NMR spectrum of **6q**

Fig.43. ¹³C-NMR spectrum of **6q**

Fig.44. DEPT-135 spectrum of 6q

Fig.45. C-H COSY spectrum of 6q

Fig.46. H-H COSY spectrum of 6q

Fig.47. HMBC spectrum of 6q

Fig.48. ESI Mass spectra of compound 6q

Fig.49. ¹H-NMR spectrum of **6r**

Fig.50. ¹³C-NMR spectrum of **6r**

Fig.51. ESI Mass spectra of compound 6r

Fig.52. ¹H-NMR spectrum of **6s**

Fig.53. ¹³C-NMR spectrum of **6s**

Fig.55. ¹³C-NMR spectrum of 6t

Fig.56. ESI Mass spectra of compound 6t

Fig.57. ¹H-NMR spectrum of **6u**

Fig.58. ¹³C-NMR spectrum of **6u**

Fig.59. ¹H-NMR spectrum of **6v**

Fig.60. ¹³C-NMR spectrum of **6v**

Fig.61. ESI Mass spectra of compound 6v

Fig.62. ¹H-NMR spectrum of **6**w

Fig.63. ¹³C-NMR spectrum of **6w**

Fig.64. ESI Mass spectra of compound 6w

Fig.65. ¹H-NMR spectrum of **6x**

Fig.66. ¹³C-NMR spectrum of **6x**

Fig.67. ESI Mass spectra of compound 6x

Fig.68. ¹H-NMR spectrum of **6y**

Fig.69. ¹³C-NMR spectrum of **6y**

Fig.70. ESI Mass spectra of compound 6y

Fig.71. ¹H-NMR spectrum of **6z**

Fig.72. ¹³C-NMR spectrum of **6z**

Fig.73. ESI Mass spectra of compound 6z

Fig.74. ¹H-NMR spectrum of A₁

Fig.75. ¹³C-NMR spectrum of A₁

Fig.76. DEPT-135 spectrum of A₁

Fig.77. HRMS spectrum of A1

Fig.78. ¹H-NMR spectrum of **B**

Fig.79. ¹³C-NMR spectrum of **B**

Fig.80. DEPT-135 spectrum of **B**

Fig.81. HRMS spectrum of **B**

Fig.82. ¹H-NMR spectrum of I

Fig.83. ¹³C-NMR spectrum of I

Fig.84. DEPT-135 spectrum of I

Fig.85. ¹H-NMR spectrum of **II**

Fig.86. ¹³C-NMR spectrum of **II**

Fig.87. DEPT-135 spectrum of II

Fig.88. HRMS spectrum of **II**

Fig.89. ¹H-NMR spectrum of III

Fig.90. ¹³C-NMR spectrum of **III**

Fig.91. DEPT-135 spectrum of III