Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Material (ESI) for New Journal of Chemistry

This journal is © The Royal Society of Chemistry 2016

Supporting Information

Mono- and Dinuclear Palladium(II) Complexes Containing Both N-Heterocyclic Carbenes and Tetrazole Ligands as Catalysts for Hiyama coupling

Jin Yang*a

^a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China Tel: + 86-561-3802-047 E-mail: yangjinlz@163.com

Table of Contents

1. Selected bond lengths, bond lengths, dihedral angles and V_{Bur} values for 1–6 (Table S1)	1
2. Crystallographic data for 1–6 (Table S2)	2
3. Characterization data for the products	3
4. ¹ H and ¹³ C NMR spectra of 1–6	4
4. High-resolution mass spectrometry of 1–6	10
5. ¹ H and ¹³ C NMR spectra of the pruducts	12
6. References	18

1. Selected bond lengths, bond lengths, dihedral angles and $\% V_{\rm Bur}$ values for 1–6

		_				
Complex	1	2	3	4	5	6
Pd-C _{carbene} (Å)	1.961(2)	1.991(4)	1.949(3)	1.972(6)	1.994(7)	1.968(3)
			1.950(3)		1.982(7)	1.948(3)
Pd-N (Å)	2.084(2)	2.116(3)	2.088(3)	2.117(5)	2.120(6)	2.084(3)
			2.109(2)		2.076(6)	2.035(3)
Pd-Cl (Å)	2.2864(7)	2.3219(16)	2.2905(10)	2.315(2)	2.302(3)	2.2714(10)
	2.3091(6)	2.3370(16)	2.2940(9)	2.329(2)	2.342(3)	2.3053(9)
			2.2715(10)		2.289(3)	2.2676(10)
			2.2813(10)		2.400(3)	2.3762(9)
C-Pd-Cl	87.18(6)	86.58(10)	89.23(8)	89.32(18)	90.3(2)	90.01(10)
	93.33(6)	94.44(10)	91.31(8)	90.94(18)	89.4(2)	90.04(10)
			90.48(8)		89.7(2)	90.34(10)
			89.54(8)		178.1(2)	178.03(10)
N-Pd-Cl	87.93(6)	87.66(10)	91.59(9)	90.80(16)	90.5(2)	91.02(8)
	91.64(6)	91.45(10)	87.99(9)	88.94(16)	89.8(2)	88.92(8)
			91.88(8)		88.96(16)	88.99(8)
			88.44(8)		174.95(15)	173.56(9)
PdCNCl ₂ /carbene	72.97	75.13	67.24	69.58	65.59	64.55
dihedral angle (°)			65.81		73.84	74.15
PdCPCl ₂ /Tetrazole	34.99	35.50	37.79	15.64	22.04	22.05
dihedral angle (°)			15.82		15.87	18.00
Carbene/Tetrazole	38.48	40.34	75.24	84.16	44.08	42.52
dihedral angle (°)			53.65		81.19	83.82
NHC $%V_{Bur}^{a}$	37.5	37.9	38.9	38.2	37.6	39.7
					36.2	37.7

Table S1. Selected bond lengths, dihedral angles and $%V_{Bur}$ values for 1–6

^{*a*} %*V*_{bur} calculated for Bondi radii scaled by 1.17, sphere radius R = 3.5 Å and Pd–C distance d = 2.00 Å.

2. Crystallographic data for 1–6

Compound	1	2	(3) ₂ •0.5CH ₂ Cl ₂	$4 \cdot CH_2Cl_2$	5	6 •1.5CH ₂ Cl ₂
formula	$C_{28}H_{38}Cl_2$	$C_{28}H_{40}Cl_2$	$C_{137}H_{170}Cl_{10}$	$C_{35}H_{46}Cl_4$	$C_{61}H_{77}Cl_3$	$C_{125}H_{168}Cl_{12}$
	N ₆ Pd	N ₆ Pd	$N_{24}Pd_4$	N ₆ Pd	N ₈ Pd	$N_{16}Pd_4$
fw	635.94	637.96	2933.07	798.98	1241.46	2745.75
crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic	triclinic
space group	P2(1)/c	P2(1)/c	$P\overline{1}$	<i>P</i> 2(1)/ <i>c</i>	$P\overline{1}$	$P\overline{1}$
<i>a</i> /Å	15.3005(15)	15.464(11)	14.712(4)	12.022(9)	12.632(16)	12.7041(18)
b/Å	16.0897(6)	16.201(12)	15.207(4)	20.900(16)	15.50(2)	15.216(2)
<i>c</i> /Å	12.2535(4)	12.484(9)	20.231(5)	16.374(12)	19.61(3)	19.059(3)
lpha /deg	90.00	90.00	68.845(4)	90.00	79.27(2)	80.336(2)
β /deg	93.0270(10)	92.812(13)	72.185(4)	103.443(11)	85.87(2)	84.728(2)
γ/deg	90.00	90.00	63.367(3)	90.00	81.40(2)	81.324(2)
$V/\text{\AA}^3$	3012.36(18)	3124(4)	3716.3(16)	4001(5)	3725(8)	3582.2(9)
Ζ	4	4	1	4	2	1
$D_{\rm calc}/{ m g~cm^{-3}}$	1.402	1.356	1.311	1.326	1.107	1.273
<i>F</i> (000)	1312	1320	1514	1648	1284	1418
μ /mm ⁻¹	0.821	0.791	0.710	0.762	0.626	0.766
GOF	0.960	1.060	1.044	1.052	1.021	1.036
reflections collected	43968	15061	19021	16825	17714	18305
independent reflections	5250	5431	12946	6887	12702	12472
$(R_{\rm int})$	(0.0264)	(0.0268)	(0.0169)	(0.0639)	(0.0604)	(0.0141)
observed						
reflections [I >	4753	4611	10691	4078	5814	10406
2 <i>σ</i> (<i>I</i>)]						
refined	242	2.42	819	423	672	765
parameters	342	542				
$R1 [I > 2\sigma(I)]$	0.0267	0.0350	0.0317	0.0571	0.0734	0.0365
wR2 (all data)	0.0761	0.1316	0.0886	0.2103	0.1359	0.1062

 Table S2 Crystallographic data for compounds 1–6

3. Characterization data for the products

4-Nitrobiphenyl¹

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.31–8.29 (m, 2H), 7.74 (dt, *J* = 8.8 Hz and 2.4 Hz, 2H), 7.63 (dt, *J* = 8.4 Hz and 2.0 Hz, 2H), 7.52–7.49 (m, 2H), 7.47–7.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 147.6, 147.0, 138.7, 129.1, 128.9, 127.8, 127.4, 124.1.

4-Methylbiphenyl¹

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.66–7.64 (m, 2H), 7.57–7.55 (m, 2H), 7.51–7.47 (m, 2H), 7.40–7.37 (m, 1H), 7.32–7.30 (m, 2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 141.1, 138.3, 137.0, 129.5, 128.7, 127.0, 126.9, 21.1.

Biphenyl¹

¹H NMR (400 MHz, CDCl₃): δ = 7.63–7.61 (m, 4H), 7.47 (dt, *J* = 7.2 Hz and 1.6 Hz, 4H), 7.37 (tt, *J* = 7.2 Hz and 2.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 141.2, 128.7, 127.2, 127.2.

4-Fluorobiphenyl²

¹H NMR (400 MHz, CDCl₃): δ = 7.63–7.59 (m, 4H), 7.53–7.49 (m, 2H), 7.44–7.40 (m, 1H), 7.22–7.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.6 (d, *J* = 244.8 Hz), 140.2, 137.3 (d, *J* = 3.2 Hz), 128.8, 128.6 (d, *J* = 8.0 Hz), 127.2, 127.0, 115.6 (d, *J* = 21.3 Hz).

3-Fluorobiphenyl³

¹H NMR (400 MHz, CDCl₃): δ = 7.68–7.66 (m, 2H), 7.56–7.52 (m, 2H), 7.49–7.47 (m, 3H), 7.42–7.40 (m, 1H), 7.16–7.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 163.2 (d, *J* = 244.0 Hz), 143.5 (d, *J* = 7.7 Hz), 139.9 (d, *J* = 2.2 Hz), 130.1 (d, *J* = 8.3 Hz), 128.8, 127.9, 127.0, 122.7 (d, *J* = 2.8 Hz), 114.1, 113.9 (d, *J* = 1.5 Hz).

2-Fluorobiphenyl³

¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 7.6 Hz, 2H), 7.53–7.51 (m, 3H), 7.47–7.44 (m, 1H), 7.41–7.36 (m, 1H), 7.30–7.21 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 159.8 (d, *J* = 246.3 Hz), 135.8 (d, *J* = 1.0 Hz), 130.8 (d, *J* = 3.4 Hz), 129.0 (d, *J* = 2.9 Hz), 128.9 (d, *J* = 43.5 Hz), 128.9 (d, *J* = 8.2 Hz), 128.4, 127.6, 124.3 (d, *J* = 3.7 Hz), 116.1 (d, *J* = 22.6 Hz).

4. ¹H and ¹³C NMR spectra of 1–6

5. High-resolution mass spectrometry of 1-6

6. ¹H and ¹³C NMR spectra of the pruducts

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm (t1)

7. References

- 1. L. Zhang, T. Meng and J. Wu, J. Org. Chem., 2007, 72, 9346.
- 2. M. E. Budén, J. F. Guastavino and R. A. Rossi, Org. Lett., 2013, 15, 1174.
- 3. J. Yu, J. Liu, G. Shi, C. Shao and Y. Zhang, Angew. Chem. Int. Ed., 2015, 54, 4079.