Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supporting Information

Insights into understanding water mediated proton conductivity in

intercalated hybrid solid of kaolinite at ambient temperature

Hao Yang,^a Xin Sun,^a Shao-Xian Liu,^a Yang Zou,^{*a} Li Li,^a Jian-Lan Liu,^a Xiao-Ming Ren^{*a,b,c}

^a State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China

^b College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, People's Republic of China

^c State Key Laboratory & Coordination Chemistry Institute, Nanjing University, Nanjing 210093, People's Republic of China

Phone: +86 25 58139476 Fax: +86 25 58139481 E-mail: <u>xmren@njtech.edu.cn</u>

Contents

Fig. S1: (a) Nyquist plots of K-Ala at T = 303 K under the selected relative humidity: (a) anhydrous condition, (b) 45% RH, (c) 50% RH, (d) 58% RH, (e) 67% RH, (f) 99% RH.

Fig. S2: Nyquist plots with fitted curve (green dots), inset: the equivalent circuit diagram.

Table S1: Comparison of bond lengths (Å) and bond angles (°) of AlO_6 and SiO_4 species in the optimized structures of raw kaolinite, K-Ala, K-Ala-H₂O and K-Ala-2H₂O, respectively

Table S2: Comparison of bond lengths (Å) and bond angles (°) of Ala molecule in the optimized structures of single crystal, K-Ala and K-Ala-H₂O and K-Ala-2H₂O, respectively

References

Fig. S1: (a) Nyquist plots of K-Ala at T = 303 K under the selected relative humidity: (a) anhydrous condition, (b) 45% RH, (c) 50% RH, (d) 58% RH, (e) 67% RH, (f) 99% RH.

Fig. S2: Nyquist plots with fitted curve (green dots), inset: the equivalent circuit diagram.

Table S1: Comparison of bond lengths (Å) and bond angles (°) of AlO_6 and SiO_4 species in the optimized structures of raw kaolinite, K-Ala, K-Ala-H₂O and K-Ala-2H₂O, respectively

		01	02 06 03 04 05 04 08 5i 07 09				
Molecular fragment		Single crystal ¹	Optimized K-	Optimized	K-	Optimized	K-Ala-
			Ala	Ala-H ₂ O		$2H_2O$	
		B	ond distances				
AlO ₆ Octahedron SiO ₄ Tetrahedron	Al-O ₁	1.912	1.920	1.932		1.930	
	Al-O ₂	1.915	1.941	1.876		1.863	
	Al-O ₃	1.868	1.937	1.854		1.847	
	Al-O ₄	1.930	1,946	1.873		1.869	
	Al-O ₅	1.927	1.943	1.850		1.932	
	Al-O ₆	1.892	1.963	1.841		1.921	
	Si-O ₄	1.613	1.629	1.628		1.638	
	Si-O ₇	1.608	1.625	1.589		1.635	
	Si-O ₈	1.618	1.638	1.617		1.645	
	Si-O ₉	1.613	1.624	1.587		1.591	
			Bond angles				
AlO ₆ Octahedron	O ₁ -Al-O ₂	76.677	78.194	71.490		69.681	
	O ₁ -Al-O ₄	93.661	92.733	96.043		96.453	
	O ₃ -Al-O ₂	93.980	99.799	99.407		100.40	

	O ₃ -Al-O ₄	97.004	90.280	94.605	95.112	
	O ₅ -Al-O ₁	93.433	88.894	96.659	97.621	
	O ₅ -Al-O ₂	96.270	89.236	92.004	93.117	
	O ₅ -Al-O ₃	77.752	75.980	72.777	71.611	
	O ₅ -Al-O ₄	93.419	95.705	99.538	99.461	
	O ₆ -Al-O ₁	94.835	98.616	87.427	87.138	
	O ₆ -Al-O ₂	93.743	97.317	95.774	95.933	
	O ₆ -Al-O ₃	95.472	96.583	104.21	104.98	
	O ₆ -Al-O ₄	77.751	78.873	73.192	72.089	
	O ₄ -Si-O ₇	113.43	110.64	104.58	107.44	
	O ₄ -Si-O ₈	109.99	108.76	108.72	103.84	
SiO_4	O ₄ -Si-O ₉	111.65	111.87	111.84	112.38	
Tetrahedron	O7-Si-O8	105.81	105.68	112.68	105.92	
	O ₈ -Si-O ₉	106.43	107.57	106.58	113.09	
	O ₉ -Si-O ₇	109.16	112.04	112.51	114.18	

Table S2: Comparison of bond lengths (Å) and bond angles (°) of Ala molecule in the optimized structures of single crystal, K-Ala and K-Ala- H_2O and K-Ala- $2H_2O$, respectively

Molecular fragment		Single crystal ²	Optimized	K-	Optimized	К-	Optimized	K-
			Ala		Ala-H ₂ O		Ala-2H ₂ O	
	Bond distances							
	C_1 - C_2	1.520	1.509		1.519		1.525	
	C ₂ -C ₃	1.533	1.570		1.554		1.569	
	C ₃ -O ₁	1.251	1.281		1.274		1.274	
	C ₃ -O ₂	1.251	1.299		1.267		1.266	
	C ₂ -N	1.481	1.525		1.516		1.521	
Ala		Bond angles						
	$C_1 - C_2 - C_3$	110.97	117.32		106.93		108.00	
	C_1 - C_2 -N	109.83	102.84		103.08		104.06	
	$C_2-C_3-O_1$	116.59	114.49		117.00		117.08	
	$C_2 - C_3 - O_2$	117.51	118.79		113.57		113.69	
	O_1 - C_3 - O_2	125.90	126.46		129.42		129.22	
	C_3 - C_2 -N	110.51	106.48		110.50		109.84	

References

- 1 D. L. Bish, Clays Clay Miner., 1993, 41, 738.
- 2 F. Kimura, W. Oshima, H. Matsumoto, H. Uekusa, K. Aburaya, M. Maeyama and T. Kimura, *CrystEngComm.*, 2014, **16**, 6630.