Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

Highly Dispersible Bis-imidazolium/WO₄²⁻ Modified Magnetic Nanoparticles:

Heterogeneous Phase Transfer Catalyst for Green and Selective Oxidation

Nasrin Zohreh,*a Maryam Tavakolizadeh, Seyed Hassan Hosseini, Mahboobeh Jahani, Ali

Pourjavadi^b Craig Bennett^c

^a Department of Chemistry, Faculty of Science, University of Qom, P. O. Box: 37185-359, Qom, Iran

^b Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran ^c Department of Physics, Acadia University, Wolfville, Nova Scotia, Canada

(E-mail address: <u>nasrin.zohreh@gmail.com</u>, n.zohreh@qom.ac.ir; Phone/fax: +982532103488)

Table S1. Optimization of oxidation of sulfide catalyzed by MNP@IL/W.

Fig. S1. Comparison of dispersion of MNP@IL/W (a) with MNP@APTS (b) in water at room temperature at pH=7.

Fig. S2. FT-IR spectrum of recycled catalyst after 5th run.

Fig. S3. TEM images of recycled catalyst after 5th run.

Fig. S4. Chromatogram of oxidation of benzyl alcohol.

Fig. S5. EDS analysis of MNP@IL/Cl.

Fig. S6. Proposed mechanism for oxidation of alcohol catalyzed by MNP@IL/W.

	S -					
			А		В	
Entry	Catalyst	H_2O_2	Time	Conv.	Yield (%) ^c	
	(mol%)	(mmol)	(h)	(%) ^b	Α	В
1	-	5	10	9	59	41
2	1	5	2	99	4	96
3	1	3	1	99	64	36
4	1	1.5	1	99	83	17
5	0.5	1.5	1	99	98	2
6	0.25	1.5	1	65	98	2
7	0.5	1	1	79	99	1

 Table S1. Optimization of oxidation of sulfide catalyzed by MNP@IL/W.^a

^a Reaction condition: methylphenyl sulfide (1mmol), water (2 mL), room temperature.

^b Conversions were calculated based on initial mmol of methylphenyl sulfide.

^c Yields were determined by GC.

Fig. S1. Comparison of dispersion of MNP@IL/W (a) with MNP@APTS (b) in water at room temperature at pH=7.

Fig. S2. FT-IR spectrum of recycled catalyst after 5th run.

Fig. S3. TEM images of recycled catalyst after 5th run.

Fig. S4. Chromatogram of oxidation of benzyl alcohol.

Fig. S6. Proposed mechanism for oxidation of alcohol catalyzed by MNP@IL/W.