Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supporting Information

Why does F-doping enhance the photocatalytic water-splitting performance of *m*BiVO₄: a density functional study

Lili Wen, ^{*a*} Kaining Ding, ^{**a*} Shuping Huang, ^{*a*} Yongfan Zhang, ^{*a,b*} Yi Li, ^{*a*} and Wenkai Chen ^{*a*}

^a Department of Chemistry, Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350108, China

^b Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

* To whom correspondence should be addressed. Email: dknfzu@fzu.edu.cn

S1. Computational methods

To further evaluate the stabilities after introducing the F atoms, the impurity formation energy (E_{form}) is calculated according to the following formula³³:

$$E_{form} = E_{doped} - E_{pure} - \mu_F + \mu_O \tag{1}$$

Where, E_{pure} and E_{doped} are the total energies of pure and F-doped *m*BiVO₄ systems, respectively. μ_F and μ_O are the chemical potentials of F and O atoms, respectively. Here, gaseous fluorine (F₂) and gaseous oxygen (O₂) are used to determine the chemical potentials : $\mu_F=1/2\mu(F_2)$, $\mu_O=1/2\mu(O_2)$.

	(010) surface			(110) surface			
	F@01	F@O2	F@O3	F@01	F@O2	F@O3	F@04
E _{form} /eV	-0.69	-0.35	-0.23	-0.64	-0.61	-0.55	-0.19

Table S1 The formation energies (E_{form}) of the F-doped mBiVO₄ (010) and (110) surfaces

To avoid the formation of hydrogen bonds between H₂O molecules and calculate the adsorption energy accurately, the (2×2) supercell for (010) and (110) surfaces were used to adsorb one H₂O molecule. All the possible adsorbed models (including water molecule parallel lying, v-shape and inverted v-shape respectively adsorbed on top sites of the V, Bi and O atoms) were optimized, and the most stable adsorbed models on the pure (010) and (110) surfaces were presented in Fig.10.

the adsorption energy (E_{ads}) is calculated by the following definition:

$$E_{ads} = E(H_2O/slab) - [E(H_2O) + E(slab)]$$
⁽²⁾

where $E(H_2O/slab)$, E(slab) and $E(H_2O)$ are the total energy of the water adsorbed slab, the total energy of the pure or F-doped slab surfaces without water adsorption and the total energy of a relaxed water molecule, respectively. The calculated values of E_{ads} are listed in Table S2.

	(010)	surface			
	Pure	F@O1	Pure	F@O1	F@O2
$E_{\rm ads}/{\rm eV}$	-0.50	-1.45	-0.55	-1.32	-1.49

Table S2 The adsorption energies (E_{ads}/eV) of water on the pure and F doped (010) and (110) surfaces.

Fig. S1 the spin partial density of states for F-doped *m*BiVO₄ bulk.