Electronic Supplementary Information

Synthesis and antioxidant properties of dicationic ionic liquids

Kamil Czerniak and Filip Walkiewicz

Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland

Table S1. Prepared dicationic quaterniary ammonium chlorides

Fig. S1 Trolox calibration curve of FRAP assay.

Fig. S2 Trolox calibration curve of CUPRAC assay.

Compounds	DPPH EC ₅₀ (μM)	ABTS EC ₅₀ (µM)	FRAP (µmol TE)	CUPRAC (µmol TE)	Linoleic acid peroxidation inhibition at 72 h (%)
1 a	5.06 ± 0.15 a	5.06 ± 0.04 a	2.86 ± 0.07 ab	5.59 ± 0.13 a	$48 \pm 6 a$
2a	5.45 ±0.20 ab	5.01 ± 0.09 a	2.74 ± 0.05 ac	5.11 ± 0.05 b	$59 \pm 2 b$
3 a	5.85 ± 0.04 bc	$5.44 \pm 0.11 \text{ b}$	3.01 ± 0.12 b	5.16 ± 0.10 b	60 ± 2 b
4 a	5.98 ±0.05 c	5.27 ± 0.10 c	2.68 ± 0.12 c	4.75 ± 0.12 c	60 ± 2 b
PCA	15.83 ±0.62 d	10.07 ± 0.15 e	$1.39 \pm 0.05 \text{ d}$	$2.71 \pm 0.09 \text{ d}$	$48 \pm 5 a$
1b	4.19 ±0.13 e	$3.41 \pm 0.08 \text{ f}$	3.93 ± 0.12 e	4.76 ± 0.13 c	13 ± 4 c
2b	3.80 ± 0.15 ef	$3.48 \pm 0.04 \; f$	$3.57 \pm 0.11 \; f$	$4.73 \pm 0.14 \text{ c}$	$14 \pm 6 c$
3 b	3.93 ±0.14 e	3.64 ± 0.01 g	$3.63 \pm 0.10 \text{ f}$	$4.28 \pm 0.14 \text{ e}$	$21 \pm 4 d$
4b	$3.55 \pm 0.10 \text{ f}$	$3.49 \pm 0.03 \text{ f}$	$3.79 \pm 0.09 \text{ e}$	$4.24 \pm 0.07 \text{ e}$	23 ± 2 d
GA	6.30 ±0.16 c	6.47 ± 0.11 i	2.18 ± 0.04 g	$2.50 \pm 0.06 \text{ d}$	18 ± 3 cd
Trolox	12.66 ±0.34 g	10.09 ± 0.09 e	-	-	$82 \pm 1 e$

Table S2 Antioxidant activity of ILs. The same letter in the column means no statisticallysignificant differences.

Fig. S3 Antioxidant activity of compounds, measured by the ferric thiocyanate method.

Fig. S4 TGA curves of DILs with PCA (A) and GA (B) anions.

Fig. S5 ¹H spectrum of oxybis(ethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[3,4-dihydroxybenzoate] (1a).

Fig. S6¹³C spectrum of oxybis(ethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[3,4-dihydroxybenzoate] (1a).

Fig. S7 ¹H spectrum of ethylenebis(oxyethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[3,4-dihydroxybenzoate] (2a).

Fig. S8¹³C spectrum of ethylenebis(oxyethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[3,4-dihydroxybenzoate] (2a).

Fig. S9 ¹H spectrum of oxybis(ethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[3,4-dihydroxybenzoate] (**3a**).

Fig. S10 ¹³C spectrum of oxybis(ethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[3,4-dihydroxybenzoate] (**3a**).

Fig. S11 ¹H spectrum of ethylenebis(oxyethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[3,4-dihydroxybenzoate] (**4a**).

Fig. S12 ¹³C spectrum of ethylenebis(oxyethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[3,4-dihydroxybenzoate] (**4a**).

Fig. S13 ¹H spectrum of oxybis(ethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[2,5-dihydroxybenzoate] (**1b**).

Fig. S14 ¹³C spectrum of oxybis(ethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[2,5-dihydroxybenzoate] (**1b**).

Fig. S15 ¹H spectrum of ethylenebis(oxyethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[2,5-dihydroxybenzoate] (**2b**).

Fig. S16 ¹³C spectrum of ethylenebis(oxyethylene)bis(1-dimethyl-3-hydroxypropylammonium) di[2,5-dihydroxybenzoate] (**2b**).

Fig. S17 ¹H spectrum of oxybis(ethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[2,5-dihydroxybenzoate] (**3b**).

Fig. S18 ¹³C spectrum of oxybis(ethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[2,5-dihydroxybenzoate] (**3b**).

Fig. S19 ¹H spectrum of ethylenebis(oxyethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[2,5-dihydroxybenzoate] (**4b**).

Fig. S20¹³C spectrum of ethylenebis(oxyethylene)bis[2-[2-(dimethyl)ethoxy]hydroxyethylammonium] di[2,5-dihydroxybenzoate] (**4b**).