NJC

Supplementary Materials

Chemical Synthesis of Nd₂Fe₁₄B Hard Phase Magnetic

Nanoparticles with Enhanced Coervivity Value; Effect of CaH₂

Amount on the Magnetic Properties

Ji Hun Jung, ^a Hao Xuan Ma, ^a Doyun Kim, ^a Chang Woo Kim, ^a In Ho Kim, ^a Jae Woo Ahn, ^a Dong Soo Kim ^b and Young Soo Kang* ^a

^a Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea. E-mail:

yskang@sogang.ac.kr; Fax: +82 2701 0967; Tel: +82 2701 6379

^b Korea Institute of Material Science, Changwon, Gyeongnam 642-831, Republic of Korea.

E-mail: dskim@kims.re.kr

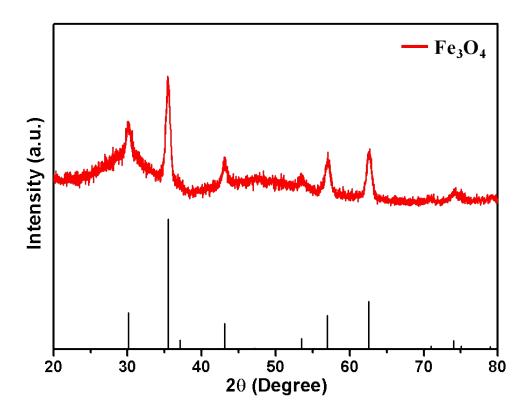


FIG. S1. X-ray diffraction pattern of the synthesized Nd-Fe-B oxide powders. Standard peak positions for Fe $_3$ O $_4$ (JCPDS# 65-3107) are indicated at the bottom.

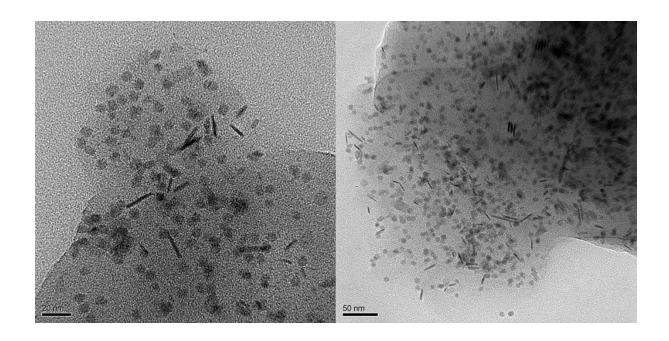


FIG. S2. TEM images of Nd-Fe-B oxide powders. The Fe_3O_4 nanoparticles (round and rodlike shape) are surrounded by the amorphous phase of neodymium and boron elements.

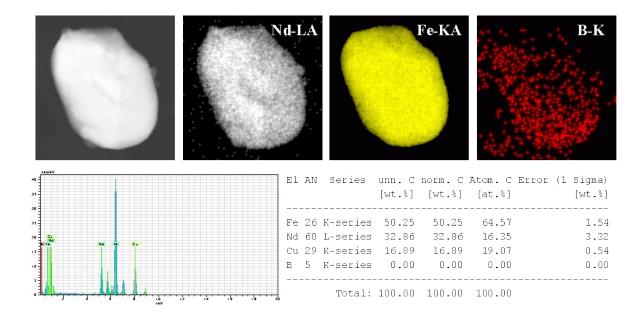


FIG. S3. EDS elemental mapping and EDS spectrum analysis of $Nd_2Fe_{14}B$ magnetic nanoparticle after annealing process at 900 $^{\circ}$ C for 2 h with CaH_2 under high purity Ar gas.

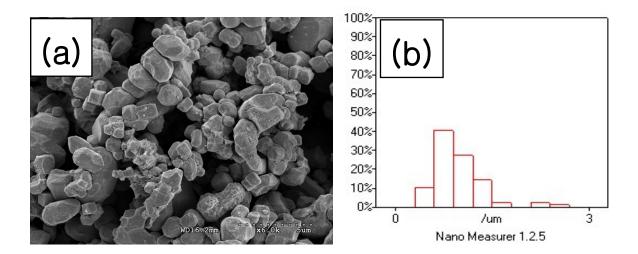


FIG. S4. (a) SEM images of $Nd_2Fe_{14}B$ particles which was synthesized by the weight ratio of 1:1.0. (b) The size distribution of the $Nd_2Fe_{14}B$ particles.