Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information (ESI)

New Journal of Chemistry

Synthesis of two potential anticancer copper(II) complexes drugs: crystal

structure, human serum albumin/DNA binding and anticancer mechanism

Kun Hu^a, Feiyan Li^a, Zhong Zhang^a and Fupei Liang^{*a,b}

^aState Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China., Fax, 086-773-2120958 ; Email: fliangoffice@yahoo.com

^bGuangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China

Supplementary material

Fig.S1: UV-Vis absorption spectra of **1** (A) and **2** (B) $(1.0 \times 10^{-6} \text{ M})$ in TBS (0.1% DMSO) with time course 0 and 48 h, respectively.

Fig. S2: FT-IR (KBr) spectra of L1.

Fig. S3: HRMS(ESI) spectra of L1. Calcd. for C₁₈H₁₅N₃O₂ [M+Na]⁺ 328.10620, found 328.10558.

Fig. S4: ¹H NMR spectra of L1 in DMSO.

Fig. S5: FT-IR (KBr) spectra of L2.

Fig. S6: HRMS(ESI) spectra of L2. Calcd. for $C_{17}H_{13}N_3O[M+H]^+$ 298.09563, found 298.09603.

Fig. S7: ¹H NMR spectra of L2 in DMSO.

Fig. S8: FT-IR (KBr) spectra of complex 1.

Fig. S9: HRMS (ESI) spectra of complex **1**. HRMS (ESI): Calcd. for C₁₈H₁₄N₅O₈Cu [M-H⁺]⁻ 491.01384, found 491.01271.

Fig. S10: FT-IR (KBr) spectra of complex 2.

Fig. S11: HR-ESI-MS spectra of complex **2.** HRMS (ESI): Calcd. for C₁₈H₁₆N₄O₅Cu [M-CH₃O⁻+NO₃⁻-H⁺]⁻ 461.00327, found 461.00189.

Table S1: DNA binding constant (K_b) , Stern-Volmer constant (K_q) and the apparent binding constant (K_{app}) for ligands and complexes.

Compound	$K_{b}(M^{-1})$	$K_q (M^{-1})$	$K_{app} (M^{-1})$
L1	$4.63 \times 10^3 \pm 0.25$	$3.67 \times 10^4 \pm 0.12$	$4.10 \times 10^5 \pm 0.11$
L2	$6.79 \times 10^3 \pm 0.15$	$4.12 \times 10^4 \pm 0.22$	$4.48 \times 10^5 \pm 0.21$
1	$1.39 \times 10^4 \pm 0.32$	$5.91 \times 10^{4} \pm 0.13$	$1.48 \times 10^{6} \pm 0.02$
2	$1.67 \times 10^4 \pm 0.21$	$9.62 \times 10^4 \pm 0.32$	$1.97 \times 10^{6} \pm 0.09$

Table S2: Stern-Volmer quenching constants and binding parameters of the HSA

 complexes drug system at different temperatures.

	Stern-Volmer quenching constants		Binding parameters			
K)	$K_{q}(M^{-1}s^{-1})$	$K_{sv}(M^{-1})$	R	$K_{bin}(M^{-1})$	n	R
295	3.70×10 ¹³ ±0.03	1.85×10 ⁵ ±0.12	0.9997	3.06×10 ⁴ ±0.18		0.9989
305	2.88×10 ¹³ ±0.03	1.44×10 ⁵ ±0.09	0.9876	2.02×10 ⁴ ±0.10	0.85	0.9987
315	2.36×10 ¹³ ±0.02	1.18×10 ⁵ ±0.06	0.9909	1.47×10 ⁴ ±0.15		0.9972
295	4.48×10 ¹³ ±0.03	2.24×10 ⁵ ±0.12	0.9992	1.63×10 ⁵ ±0.12		0.9989
305	3.40×10 ¹³ ±0.03	$1.70 \times 10^5 \pm 0.13$	0.9992	1.13×10 ⁵ ±0.10	0.97	0.9985
315	2.74×10 ¹³ ±0.02	1.37×10 ⁵ ±0.11	0.9983	$0.89 \times 10^{5} \pm 0.08$		0.9967
F 200 300 300 300 300	 (1) (2) (3) (3) (4) (5) (5) (6) (6) (7) (7)	K) $K_q (M^{-1}s^{-1})$ 95 $3.70 \times 10^{13} \pm 0.03$ 95 $2.88 \times 10^{13} \pm 0.03$ 95 $2.36 \times 10^{13} \pm 0.02$ 95 $4.48 \times 10^{13} \pm 0.03$ 95 $3.40 \times 10^{13} \pm 0.03$ 95 $3.40 \times 10^{13} \pm 0.03$ 95 $2.74 \times 10^{13} \pm 0.02$	K) $K_q (M^{-1}s^{-1})$ $K_{sv} (M^{-1})$ $P5$ $3.70 \times 10^{13} \pm 0.03$ $1.85 \times 10^5 \pm 0.12$ $P5$ $2.88 \times 10^{13} \pm 0.03$ $1.44 \times 10^5 \pm 0.09$ $P5$ $2.36 \times 10^{13} \pm 0.02$ $1.18 \times 10^5 \pm 0.09$ $P5$ $4.48 \times 10^{13} \pm 0.03$ $2.24 \times 10^5 \pm 0.12$ $P5$ $3.40 \times 10^{13} \pm 0.03$ $1.70 \times 10^5 \pm 0.13$ $P5$ $2.74 \times 10^{13} \pm 0.02$ $1.37 \times 10^5 \pm 0.11$	K) $K_q (M^{-1}s^{-1})$ $K_{sv} (M^{-1})$ R95 $3.70 \times 10^{13} \pm 0.03$ $1.85 \times 10^5 \pm 0.12$ 0.9997 95 $2.88 \times 10^{13} \pm 0.03$ $1.44 \times 10^5 \pm 0.09$ 0.9876 15 $2.36 \times 10^{13} \pm 0.02$ $1.18 \times 10^5 \pm 0.06$ 0.9909 95 $4.48 \times 10^{13} \pm 0.03$ $2.24 \times 10^5 \pm 0.12$ 0.9992 95 $3.40 \times 10^{13} \pm 0.03$ $1.70 \times 10^5 \pm 0.13$ 0.9992 15 $2.74 \times 10^{13} \pm 0.02$ $1.37 \times 10^5 \pm 0.11$ 0.9983	K) $K_q (M^{-1}s^{-1})$ $K_{sv} (M^{-1})$ R $K_{bin} (M^{-1})$ 95 $3.70 \times 10^{13} \pm 0.03$ $1.85 \times 10^5 \pm 0.12$ 0.9997 $3.06 \times 10^4 \pm 0.18$ 95 $2.88 \times 10^{13} \pm 0.03$ $1.44 \times 10^5 \pm 0.09$ 0.9876 $2.02 \times 10^4 \pm 0.10$ 95 $2.36 \times 10^{13} \pm 0.02$ $1.18 \times 10^5 \pm 0.06$ 0.9909 $1.47 \times 10^4 \pm 0.15$ 95 $4.48 \times 10^{13} \pm 0.03$ $2.24 \times 10^5 \pm 0.12$ 0.9992 $1.63 \times 10^5 \pm 0.12$ 95 $3.40 \times 10^{13} \pm 0.03$ $1.70 \times 10^5 \pm 0.13$ 0.9992 $1.13 \times 10^5 \pm 0.10$ 15 $2.74 \times 10^{13} \pm 0.02$ $1.37 \times 10^5 \pm 0.11$ 0.9983 $0.89 \times 10^5 \pm 0.08$	K) $K_q (M^{-1}s^{-1})$ $K_{sv} (M^{-1})$ R $K_{bin} (M^{-1})$ n 95 $3.70 \times 10^{13} \pm 0.03$ $1.85 \times 10^5 \pm 0.12$ 0.9997 $3.06 \times 10^4 \pm 0.18$ 0.85 95 $2.88 \times 10^{13} \pm 0.03$ $1.44 \times 10^5 \pm 0.09$ 0.9876 $2.02 \times 10^4 \pm 0.10$ 0.85 95 $2.36 \times 10^{13} \pm 0.02$ $1.18 \times 10^5 \pm 0.06$ 0.9909 $1.47 \times 10^4 \pm 0.15$ 0.85 95 $4.48 \times 10^{13} \pm 0.03$ $2.24 \times 10^5 \pm 0.12$ 0.9992 $1.63 \times 10^5 \pm 0.12$ 0.97 95 $3.40 \times 10^{13} \pm 0.03$ $1.70 \times 10^5 \pm 0.13$ 0.9992 $1.13 \times 10^5 \pm 0.10$ 0.97 15 $2.74 \times 10^{13} \pm 0.02$ $1.37 \times 10^5 \pm 0.11$ 0.9983 $0.89 \times 10^5 \pm 0.08$ 0.97

Fig. S12: Synchronous fluorescence spectra of HSA (1.0 μ M, black line) in presence of increasing amounts of L1 (A, B) and L2 (C, D) (0-6.0 μ M; a to g) at the wavelength difference of $\Delta\lambda$ = 15 and $\Delta\lambda$ = 60 nm.

Fig. S13: The emission spectrum of HSA (1 μ M; λ ex=280 nm) in the absence and presence of the 2 with increasing concentrations (0, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μ M) from a to g at pH=4.7.

Fig. S14: The IC₅₀ curves of L1, L2, 1, 2 and cisplatin on the selected cells for 48 h.

Compounds	HeLa	WI-8	
1	5.01 ±0.41	9.71 ±0.67	
2	2.98 ±0.34	9.45 ±0.87	
L1	>20	>20	
L2	>20	>20	
Cisplatin	35.25±1.88	19.25±0.37	
Cu(NO ₃)·3H ₂ O	>20	>20	
DMSO (0.1%)	>20	>20	

Table S3: IC_{50} (µM) values of L1, L2, 1, 2 and cisplatin on the selected cells for 48 h.

Table S4: Log *P* values for the complexes **1**, **2** in present system, $[Cu(L1)NO_3]$ and $[Cu(L2)NO_3](H-L1=8$ -quinolinecarbaldehyde o-vanilloylhydrazone, and H-L2=8-quinolinecarbaldehyde salicylhydrazone) in our previous work.

Compounds	Log P	
1	1.55 ±0.12	In this work
2	1.62 ±0.23	
[Cu(L1)NO ₃]	1.52 ±0.28	In our previous work
[Cu(L2)NO ₃]	1.35 ±0.25	

Fig. S15: Mass spectrometry detection of the interaction between complex 2 and mitochondria. A) Complex 2 was dissolved in DMSO and analyzed by electrospray ionization mass spectrometry at IC_{50} concentration $[M-CH_3O^++NO_3^--H^+]^-$ 461.00253. B) Complex 2 directly interacted with mitochondria. Mitochondria were extracted from HeLa cells with Mitochondrial Extraction Kit and incubated with complex 2 for 1 h. The mixture was eluted 3 times and then diluted with buffer solution to make 1.0 ml.

Table S5: The concentration of copper ion in HeLa cell (Control), and solution of complex 2 (at IC_{50} value concentration) and mitochondrial extracts of HeLa cell after incubating for 1 h (Mitochondrial).

Sample	Cu(II) (µg/L)
Control	2.53 ±0.22
Mitochondrial	2.71 ±0.18