SUPPLEMENTARY INFORMATION

FOR

New Journal of Chemistry

Synthesis and molecular structures of divalent bridged bis(guanidinate)

europium complexes and their application in intermolecular

hydrophosphination of alkenes and alkynes

Qianqian Liu, Chuanyong Wang, Xingmin Zhang, Mingqiang Xue,* Yingming Yao, Yong

Zhang and Qi Shen*

The Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.

S1 Table S1) X-ray CrystallographyData for Complexes 1-3
S2) Experimental
S3) Spectral data for the addition products of alkenes4-6
S4) Copies of NMR Spectra forall compounds7-21
S5) Spectral data for NMR-scale reaction of alkynes
S6 Table S2) Hydrophosphination of diphenylphosphane to styrene by 1 and 2 27
S7 Table S3) Hydrophosphination of diphenylphosphane to phenylacetylene by 1 and
2 27 The in situ 31 P NMR spectrum
S8) References
S9) Crystal Data

	1.THF	2	3·2THF
Formula	C35H76ClN6O3Si2Eu	$C_{46}H_{104}N_{12}Si_4Eu_2$	$C_{64}H_{104}N_{12}O_4Eu_2$
Mw	872.61	1241.69	1409.51
T (K)	223(2)	223(2)	223(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/n$	Pī	$P2_1/c$
Crystal size/mm	$0.55 \times 0.35 \times 0.30$	$0.40\times\!\!0.20\times0.10$	$0.80 \times 0.70 \times 0.70$
a (Å)	14.6965(5)	13.5784(13)	12.834(4)
b (Å)	13.2218(4)	13.6097(10)	14.323(4)
c (Å)	23.7134(8)	19.0544(10)	19.638(7)
α (Å)	90	71.442(10)	90
β (Å)	92.135	75.023(9)	107.298(6)
γ (°)	90	83.412(12)	90
V (Å ³)	4604.6(3)	3222.7(5)	3447(2)
$Z(Å^3)$	4	2	2
Dcalcd (g cm ⁻³)	1.259	1.280	1.358
$(\mu(mm^{-1}))$	1.508	2.040	1.855
F (000)	1840	1292	1460
θ range (°)	2.77-26.37	3.02-25.50	3.04-25.50
Colledrflens	32205	26124	17199
Unique rflens	9410	11920	6363
Rint	0.0482	0.0635	0.0447
GOF	1.036	1.086	1.122
R [I >2σ(I)]	0.0726	0.0851	0.0499
wR	0.1857	0.1836	0.1298
Largest diff. peak and hole (e $Å_{-3}$)	3.959, -2.437	2.368, -3.183	1.266, -1.287
R _{int}	0.0482	0.0635	0.0447

S1 Table S1 X-ray Crystallography Data for Complexes **1–3**

S2 Experimental

General procedures

All manipulations of air-sensitive materials were carried out under an atmosphere of dry argon by using modified Schlenk line and glovebox techniques. The solvents of THF, toluene, and n-hexane were dried and freed of oxygen by distilling from sodium benzophenoneketyl under argon before use.Diphenylphosphine were purchased from Aldrich and used as received. All the liquid alkenes and alkynes were dried over CaH₂, freshly distilled, and degassed prior to use. All the solid alkenes and alkynes were degassed prior to use. The ligand precursor L^1Li_2 (THF) ($L^1Li_2 = [iPr(Me_3Si)NC(NiPr)N(CH_2)_3NC(NiPr)N(SiMe_3)iPr]Li_2was$ prepared according to the literature procedure.¹

NMR spectra were recordedon a Bruker AVANCE III HD-400 spectrometer(CDCl₃ as solvent).Chemical shifts for¹H, ¹³C and ³¹P NMR spectra were referenced internallyusing the residual solvent resonances and reported relative to TMS.Elemental analysis was performed by directusing a Carlo-Erba EA1110 instrument. The IR spectrawere recorded on a Magna-IR 550spectrometer as KBr pellets. The uncorrected melting points of crystalline samples in sealed capillaries (under argon) are reported as ranges.

NMR-Scale Catalytic Reactions

The catalyst (1 mol%) was loaded in a 10 mL Sample bottle (with a stirring bar) in the glovebox under dried nitrogen. To the bottle were added the diphenylphosphine (Ph₂PH) (5.747 M, 1.00 mmol) and the alkene/alkyne (1.00 mmol). The responding mixture started at 60 °C or room temperature. After the desired reaction time, CDCl₃ was added to the selected reaction mixture, and the ¹H NMR and ³¹P NMR spectrum was recorded shortly after regular time intervals.Conversion was determined by integrating the remaining alkene/alkyne and the newly formed addition product.

Preparative-scale Catalytic Reactions

The complex 2(12.5 mg, 0.01 mmol, 1 mol%)was loaded ina10 mL Samplebottle (with a stirring bar) in the glovebox under dried nitrogen. To the bottle were addedthediphenylphosphine (Ph₂PH) (5.747 M, 1.00 mmol)and the alkene (1.00 mmol). The respondingmixture started at 60 °C. After the desired reaction time, the resulting mixturewas dissolved in EtOAcfollowed by the addition of silica gel and removal of the excessof solvent in vacuo. The reaction crude absorbed on silicagel was subjected to columnchromatography (silica gel, petroleum ether/EtOAc) to give the pure phosphanes4.

S3 Spectroscopic data for the addition products of alkenes

phenethyldiphenylphosphine (4a).²¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.15 (m, 14H), 2.74-2.68 (m,2H), 2.38-2.33 (m, 2H).³¹P NMR (162 MHz, CDCl₃): δ = -15.9 ppm (s).

(3-bromophenethyl)diphenylphosphine (4b).³¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.42 (m, 4H), 7.38-7.30 (m, 8H),7.15-7.08 (m, 2H), 2.72-2.66 (m,2H), 2.36-2.32 (m, 2H).³¹P NMR (162 MHz,CDCl₃): δ = -16.0 ppm (s).

PPh₂

(4-bromophenethyl)diphenylphosphine (4c).⁴¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.34 (m, 12H,), 7.04 (m, 2H),2.71-2.65 (m,2H), 2.36-2.32 (m, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -16.2 ppm (s).

(2-chlorophenethyl)diphenylphosphine (4d).¹H NMR (400 MHz, CDCl₃) δ = 7.51-7.47 (m, 4H), 7.38-7.31 (m, 7H),7.21-7.11 (m, 3H), 2.88-2.82 (m, 2H), 2.39-2.35 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ = 140.3 (d, J_{cp} = 13.8Hz), 138.4 (d, J_{cp} = 12.9Hz), 133.8, 132.9 (d, J_{cp} = 18.3 Hz), 130.4, 129.6, 128.8, 128.5 (d, J_{cp} = 6.7 Hz), 127.7, 127.0, 30.5 (d, J_{cp} = 19.2 Hz), 28.5 (d, J_{cp} = 13.3 Hz).³¹P NMR (162 MHz, CDCl₃) δ = -15.5 ppm (s).HRMS (EI):m/z calcd. for C₂₀H₁₈CIP 325.0839, found 325.0826.

PPh₂

(3-chlorophenethyl)diphenylphosphine (4e).¹H NMR (400 MHz, CDCl₃) δ = 7.48-7.33 (m, 10H), 7.22-7.04(m, 4H), 2.74-2.68 (m,2H), 2.38-2.34 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ = 144.7 (d, J_{cp} = 13.3 Hz), 138.3 (d, J_{cp} = 12.9 Hz), 134.3, 132.8 (d, J_{cp} = 18.6 Hz), 129.8, 128.9, 128.6 (d, J_{cp} = 6.7 Hz), 128.4, 126.4 (d, J_{cp} = 19.4 Hz), 32.0 (d, J_{cp} = 18.3 Hz), 30.0 (d, J_{cp} = 13.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ = -16.0 ppm (s).HRMS (EI):m/z calcd. for C₂₀H₁₈CIP 325.0816, found 325.0831.

(4-chlorophenethyl)diphenylphosphine (4f).⁵¹H NMR (400 MHz, CDCl₃) δ = 7.35-7.21 (m, 10H), 7.11-7.09 (m, 2H), 6.97-6.95 (m, 2H), 2.60-2.54 (m, 2H), 2.24-2.19 (m, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -16.2 ppm(s).

(4-methoxyphenethyl)diphenylphosphine (4g).²¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.42 (m, 4H), 7.35-7.33 (m, 6H),7.09 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 2.70-2.64 (m, 2H),2.36-2.32 (m, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -16.2 ppm(s).

(4-methylphenethyl)diphenylphosphine (4h).⁶¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.32 (m, 10H), 7.09-7.07 (m, 4H), 2.71-2.65 (m,2H), 2.36-2.33 (m, 2H), 2.31 (s, 3H).³¹P NMR (162 MHz, CDCl₃) δ = -16.0 ppm(s).

(2-([1,1'-biphenyl]-4-yl)ethyl)diphenylphosphine (4i).⁴¹H NMR (400 MHz, CDCl₃) δ = 7.50-7.16 (m, 19H), 2.72-2.68 (m, 2H), 2.35-2.31 (m, 2H).³¹P NMR (161.9 MHz, CDCl₃) δ = -15.7 ppm(s).

(4-(tert-butyl)phenethyl)diphenylphosphine (4j).⁷¹H NMR (400 MHz, CDCl₃) δ = 7.48-7.30 (m, 12H), 7.13 (d, *J* = 8.2 Hz, 2H),2.75-2.69 (m,2H), 2.40-2.36 (m, 2H), 1.32 (s, 9H).³¹P NMR (162 MHz,CDCl₃) δ = -15.7 ppm(s).

(2,2-diphenylethyl)diphenylphosphine (4k).⁸¹H NMR (400 MHz, CDCl₃) δ =7.42-7.15 (m, 20 H), 3.97–3.91 (m, 1H), 2.85 (d, J = 8.0 Hz, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -20.8 ppm(s).

PPh₂

2-(2-(diphenylphosphino)ethyl)pyridine (41).²¹H NMR (400 MHz, CDCl₃) δ = 8.52 (d, J = 4.8 Hz, 1H), 7.58-7.53 (m, 1H), 7.48-7.44 (m, 4H), 7.36-7.31 (m, 6H), 7.11-7.07 (m, 2H), 2.94-2.87 (m, 2H), 2.53-2.49 (m, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -15.4 ppm(s).

4-(2-(diphenylphosphino)ethyl)pyridine (4m).²¹H NMR (400 MHz, CDCl₃) δ = 8.48-8.46 (m, 2H), 7.46-7.34 (m, 10H), 7.09 (d, *J* = 5.9 Hz, 2H), 2.74-2.67 (m, 2H), 2.38-2.33 (m, 2H).³¹P NMR (162 MHz, CDCl₃) δ = -16.0 ppm(s).

PPh₂

Methyl-3-(diphenylphosphanyl)propanoate (40).³¹H NMR (400 MHz, CDCl₃) δ = 7.45-7.40 (m, 4H), 7.36-7.33 (m, 6H), 3.64 (s, 3H), 2.44-2.32 (m, 4H).³¹P NMR (162 MHz, CDCl₃) δ = -15.7 ppm(s).

Figure S1. ¹H NMR spectrum of phenethyldiphenylphosphine (4a)in CDCl₃.

Figure S2. ³¹P NMR spectrum of phenethyldiphenylphosphine (4a)in CDCl₃.

Figure S3. ¹H NMR spectrum of (3-bromophenethyl)diphenylphosphine (4b)in CDCl₃.

Figure S4. ³¹P NMR spectrum of (3-bromophenethyl)diphenylphosphine (4b)in CDCl₃.

Figure S5. ¹H NMR spectrum of (4-bromophenethyl)diphenylphosphine (4c)in CDCl₃.

Figure S6. ³¹P NMR spectrum of (4-bromophenethyl)diphenylphosphine (4c)in CDCl₃.

Figure S7. ¹H NMR spectrum of (2-chlorophenethyl)diphenylphosphine (4d)in CDCl₃.

Figure S8. ¹³C NMR spectrum of (2-chlorophenethyl)diphenylphosphine (4d)in CDCl₃.

Figure S9. ³¹P NMR spectrum of (2-chlorophenethyl)diphenylphosphine (4d)in CDCl₃.

Figure S10. ¹H NMR spectrum of (3-chlorophenethyl)diphenylphosphine (4e)in CDCl₃.

Figure S11. ¹³C NMR spectrum of (3-chlorophenethyl)diphenylphosphine (4e)in CDCl₃.

Figure S12. ³¹P NMR spectrum of (3-chlorophenethyl)diphenylphosphine (4e)in CDCl₃.

Figure S13. ¹H NMR spectrum of (4-chlorophenethyl)diphenylphosphine (4f)in CDCl₃.

Figure S14. ³¹P NMR spectrum of (4-chlorophenethyl)diphenylphosphine (4f)in CDCl₃.

Figure S15. ¹H NMR spectrum of (4-methoxyphenethyl)diphenylphosphine (4h)in CDCl₃.

Figure S16. ³¹P NMR spectrum of (4-methoxyphenethyl)diphenylphosphine (4h)in CDCl₃.

Figure S17. ¹H NMR spectrum of (4-methylphenethyl)diphenylphosphine (4i)in CDCl₃.

Figure S18. ³¹P NMR spectrum of (4-methylphenethyl)diphenylphosphine (4i)in CDCl₃.

Figure S19. ¹H NMR spectrum of (2-([1,1'-biphenyl]-4-yl)ethyl)diphenylphosphine (4j)in CDCl₃.

Figure S20. ³¹PNMR spectrum of (2-([1,1'-biphenyl]-4-yl)ethyl)diphenylphosphine (4j)in CDCl₃.

Figure S21. ¹H NMR spectrum of (4-(tert-butyl)phenethyl)diphenylphosphine (4k)in CDCl₃.

Figure S22. ³¹PNMR spectrum of (4-(tert-butyl)phenethyl)diphenylphosphine (4k)in CDCl₃.

Figure S23. ¹H NMR spectrum of (2,2-diphenylethyl)diphenylphosphine (4l)in CDCl₃.

Figure S24. ³¹PNMR spectrum of (2,2-diphenylethyl)diphenylphosphine (4l)in CDCl₃.

2.94 2.87 2.53 2.49

Figure S25. ¹H NMR spectrum of 2-(2-(diphenylphosphino)ethyl)pyridine (4m)in CDCl₃.

Figure S26. ³¹P NMR spectrum of 2-(2-(diphenylphosphino)ethyl)pyridine (4m)in CDCl₃.

Figure S27. ¹H NMR spectrum of 4-(2-(diphenylphosphino)ethyl)pyridine (4n)in CDCl₃.

Figure S28. ³¹P NMR spectrum of 4-(2-(diphenylphosphino)ethyl)pyridine (4n)in CDCl₃.

Figure S29. ¹H NMR spectrum of methyl-3-(diphenylphosphanyl)propanoate (4p)in CDCl₃.

Figure S30. ³¹P NMR spectrum of methyl-3-(diphenylphosphanyl)propanoate (4p)in CDCl₃.

S5 Spectral data for NMR-scalereaction of alkynes

¹ H NMR for P1 (400 MHz, CDCl₃)⁹ δ = 6.47 (dd, *J* = 12.6, 2.6 Hz, 1 H),7.31-7.34 (m, 9H), 7.40-7.33 (m, 1H), 7.47-7.44 (m, 4H), 7.52 (d, *J* = 7.3 Hz, 2H).

¹ H NMR for P1 (400 Hz,CDCl₃)⁶ δ = 8.44 (d, *J* = 4.4 Hz, 1H), 7.47-7.43 (m, 5H), 7.38-7.36 (m, 4H), 7.29-7.27 (m, 3H), 7.04-7.01 (m, 1H), 6.84-6.78 (m, 1H), 6.71-6.68 (m, 1H).

¹ H NMR for P1 (400 Hz, CDCl₃)⁹ δ = 7.50-7.45 (m, 6H), 7.37-7.32 (m, 7H), 7.12-7.10 (m, 2H), 6.39 (dd, J = 12.6, 2.9 Hz, 1H).

¹ H NMR for P1 (400 Hz, CDCl₃)⁹ δ = 7.49-7.43 (m, 6H), 7.36-7.32 (m, 7H), 6.85 (d, *J* = 9.0, 2H), 6.31 (dd, *J* = 12.6, 2.8 Hz, 1H), 3.79 (s, 3H).

¹ H NMR for P1 (400 Hz, CDCl₃) δ = 7.50-7.49 (m, 4H), 7.40-7.38 (m, 9H), 7.34-7.33 (m, 2H), 6.54 (dd, J = 12.7, 1.8 Hz, 1H).

$+ Ph_2PH \xrightarrow{Cat.} 4a$							
Entry	Cat. (mol)	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)		
1	1 (1%)	-	60	6	trace		
12	2 (1%)	-	60	6	98		

DDh

S6 Table S2 Hydrophosphination of diphenylphosphane to styrene by complexes 1 and 2^a

^a Conditions: neat substrates in a 1:1 ratio, 60 °C.^b Yield determined by ¹H NMR and ³¹P NMR spectroscopy in CDCl₃.

S7 Table S2 Hydrophosphination of alkynes by complexes 1 and 2^{a}

	Ph	PH <u>Cat. solvent-free</u> r,t,, 2.5 h Ph PPh ₂ + Ph Z	E
Entry	Cat. (mol)	Conv. $(\%)^b$	Selectivity ^b
1	1 (1%)	-	-
2	2 (1%)	100	Z:E = 75:25

^a Conditions: alkyne (1.0 mmol), Ph₂PH (1.00 mmol, 1 eq), **1** (8.7 mg, 1 mol%), **2** (12.5 mg, 1 mol%). ^b Based on ¹H and ³¹P NMR spectroscopy in CDCl₃.

Firstly, the intermolecular hydrophosphination of styrene with Ph₂PH was examined by Eu^{III} complex **1**. We found that complex **1** could hardly catalyze the reaction (**Table S2**, Entry 1). Then we explored the model reaction between phenylacetylene and Ph₂PH, only to find that it did not happen under the similar conditions (**Table S3**, Entry 1). From above results, we could conclude that the activity of Eu^{III} complex is obviously less active than that of the Eu^{II} complex. Eu^{II} has larger ion radius compared to Eu^{III}, therefore, the size of metal ions may play an important role in this intermolecular hydrophosphination.

Figure S31. The in situ ³¹P NMR spectrum of the hydrophosphination of styrene

 $\label{eq:complex_2} \ensuremath{_{(a)}} \ensuremath{Complex} \ensuremath{2} (124.2 \mbox{ mg}) + \ensuremath{Ph_2PH} \ensuremath{(17.40 \mu L\)} \ensuremath{\text{in } C_6D_6;} \ensuremath{(b)} \ensuremath{Ph_2PH} \ensuremath{\text{in } C_6D_6;} \ensuremath{(c)} \ensuremath{Complex} \ensuremath{(c)} \$

Figure S32. The in situ ³¹P NMR spectrum of the hydrophosphination of styrene

(a) Ph_2PH in C_6D_6 ; (b) Complex 2 (122.4 mg) + Ph_2PH (17.15 μ L) + styrene (11.29 μ L) in C_6D_6

Ph₂PH was firstly added to complex **2**, then stirred at 60 °C. From **Figure S31**, we can conclude there is no new P emerging, which indicated that the dinuclear species might not dissociate in the presence of HPPh₂. Afterwards, styrene was added and new P product appeared. Another way was tried, namely, Ph₂PH and styrene were added to complex **2**, then stired at 60 °C. From **Figure S32**, we can see the P product emerge, which told us that when three components were combined the hydrophosphination reaction occurred. The active species is still under research in our laboratory.

S8 REFERENCES

- 1. X. Zhang, C. Wang, M. Xue, Y. Zhang, Y. Yao and Q. Shen, J. Organomet. Chem., 2012, 713, 182–188.
- 2. M. O. Shulyupin, M. A. Kazankova and I. P. Beletskaya, Org. Lett. 2002, 4,761-763.
- 3. K. J. Gallagher and R. L. Webster, *Chem. Commun.*, 2014, **50**, 12109–12111.
- 4. F. Alonso, Y. Moglie, G. Radivoyb and M.Yusa, *Green Chem.*, 2012, 14, 2699–2702.
- F. Alonso, Y. Moglie and G. Radivoy, M. Yus, A. Leyva-Pfrez, J. A. Vidal-Moya, J. R. Cabrero-Antonino, S. S. Al-Deyab, S. I. Al-Resayes and A. Corma, *J. Organomet. Chem.*, 2010, 696, 362–367.
- 6. H. Hu and C. Cui, Organometallics, 2012, **31**, 1208–1211.
- 7. B. Liu, T. Roisnel, J-F. Carpentier and Y. Sarazin, Chem. -Eur. J., 2013, **19**, 13445–13462.
- 8. J. Yuan, H. Hu, C. Cui, Chem. -Eur. J., 2016, 22, 5778-5785.
- 9. Y. Moglie, M. J. González-Soria, I. Martín-García, G.Radivoy and F. Alonso, Green Chem., 2016.

S9Crystal Data

