Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information for

Efficient synthesis of novel pyrrolo[2,3-c]pyridone derivatives using Ugi four-component reaction followed by

condensation reaction

JalliVenkataprasad*, Suvratha Krishnamurthy, TetsujiMoriguchi and Akihiko Tsuge

Address:Department of Applied Chemistry, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 8048550, Japan

Email: jvprasad.008@gmail.com

* Corresponding author

Experimental procedure for the PTSA promoted sequential one pot of synthesis pyrrolo[2,3-c]pyridone (6a):

Pyrrole-2-carbaldehyde (1 mmol), 4-bromo aniline (1 mmol), phenylglyoxylic acid (1.2 mmol) and *t*-butyl isocyanide (1 mmol) were taken in 3 mL methanol. This mixture was stirred at room temperature for 60 min and PTSA (50 mol%) was added to the same reaction mixture and heated at 50°C for 2h. The volatiles were removed under reduced pressure and product 6a was purified by flash column chromatography in 70% yield.

Table 1. Crystal data and structure refinement for 6g

CCDC number	1484244
Empirical formula	2C ₂₅ H ₂₄ BrN ₃ O ₃ ·2H2O
Formula weight	1024.80
Temperature	90K
Wavelength	0.71073A
Crystal system, space group	Monoclinic, P2 ₁ /n
Unit cell dimensions	a= 17.720 (4) alpha=90 deg.
	b= 9.681(2) beta= 107.915(2) deg.
	c = 27.874(6) gamma=90 deg.
Volume	4549.9 (18) Å ³
Z	4
Absorption correction	Semiemperical from equivalents
Goodness of fit	1.13
Theta range for data collection	1.22 to 25.01 deg.
Refinement method	Full-matrix least sqares
Crystal size	0.40 × 0.15 × 0.15 mm

Star

Star

Star

Star

Star

