Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Solvent Extraction of Americium(III) and Europium(III) with Tridentate N,N-dialkyl-1,10-Phenanthroline-2-Amides-Derived Ligands: Extraction, Complexation and Theoretical Study

Shiwei Cao,^{†ac} Jieru Wang,^{†a} Cunmin Tan,^{†abc} Xin Zhang,^b, Guo Hangxu,^{ac} Lei Wang,^d Zhi Qin*^a

a. Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Rd., 730000, Lanzhou, China. b. School of Nuclear Science and Technology, Lanzhou University, No. 222 Tianshuinan Rd., 730000, Lanzhou,

China.

c. School of Physical Science and Technology, University of Chinese Academy of Sciences, No. 19A Yuquan Rd., 100049, Beijing. China.

d. College of Chemistry, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P.R. China.

† These authors contributed equally to this work.* Author for correspondence (E-mail: qinzhi@impcas.ac.cn).

Electronic supplement information

1. FT-IR

Fig. S1 FT-IR spectrum of C2-PTA

Fig. S2 FT-IR spectrum of C4-PTA

Fig. S3 FT-IR spectrum of C6-PTA

2.¹H NMR

Fig. S5 ¹H NMR spectrum of C4-PTA

Fig. S7 ¹³C NMR spectrum of C2-PTA

Source Type: ESI Focus: Active Scan Begin: 100 m/z Scan End: 1000 m/z Ion Polarity: Positive Set Capillary: 4500 V Set End Plate offset: -500 V Set Collision Cell RF: 280.0 Vpp Set Nebulizer: 0.4 Bar Set Dry Heater: 180 °C Set Dry Gas: 4.0 l/min Set Divert Valve: Waste

^{2.} Solvent extraction data

Effect of diluents

Solubilities test shows that C2-PTA is well soluble in cyclohexanone, 1,2-dichloroethane, 2-chrolomethane and chloroform, incompletely soluble in n-octanol and tert-butylbenzene (TBB), and almost insoluble n-hexane and kerosene. The extraction behaviors of Am(III) and Eu(III) with C2-PTA in such diluents were measured, and the results are shown in Table S1.

In spite of the good performance of tetradentate N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) in the solvent extraction in cyclohexanone [*Xiao, C.-L., et al. (2014).* <u>Inorganic chemistry</u> **53**(3): *1712-1720.*], the solubilities of cyclohexanone (8.6 g/100 mL) is much higher than 1,2-dichloroethane (0.81 g/100 mL) and chloroform (0.82 g/100 mL) at 293 K in water, which may lead to a vulnerable organic phase as well as an unstable extraction process. And as is seen from Table S1, the distribution ratios of both Am(III) and Eu(III) with C2-PTA present much higher in chloroform than in cyclohexanone and 1,2-dichloroethane. Such results showed that chloroform is favorable for the extraction of Am(III) and Eu(III) with C2-PTA.

Table S1 Solubilities of C2-PTA, the distribution ratios and the extraction efficient of Am(III) and Eu(III). Organic phase: 0.2 mol/L C2-PTA. Aqueous phase: $10^{-3.63} \text{ mol/L HNO}_3 + {}^{241}\text{Am}/{}^{152}\text{Eu}$ radiotracers. T = 293 K. The statistical error values were less than 5%.

	= 295 K. The statistical ef		70.
Diluent	Cyclohexanone	1,2-dichloroethane	Chloroform
D(Am)	0.23	2.2	25.2
D(Eu)	0.33	1.4	3.3
E(Am)	19%	69%	96%
<i>E</i> (Eu)	25%	58%	76%

Effect of extractant concentration

Fig. S13 Effect of extractant concentration. Organic phase: C2-PTA in chloroform. Aqueous phase: $10^{-3.63}$ mol/L HNO₃ + ²⁴¹Am/¹⁵²Eu tracers. *T* = 293 K.

3. Solution spectroscopy

Fig. S14 UV-vis titration of Phen by H⁺ in HNO₃/methanol media. $c_{Phen} = 2.5 \times 10^{-5}$ mol/L, $c_{H+} = 0-4.0 \times 10^{-5}$ mol/L, T = 293 K.

4. Optimized structures

Fig. S15 Optimized structures of Am(C2-PTA)(NO₃)₃ in front view (left) and lateral view (right).

Fig. S16 Optimized structures of Eu (C2-PTA)(NO₃)₃ in front view (left) and lateral view (right).

		Standard	lorientation		
Center	Atomic	Atomic Atomic Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z
1	6	0	-0.571877	4.192021	0.634449
2	6	0	-1.646207	3.320528	0.630439
3	6	0	-1.439161	1.984736	0.227706
4	7	0	-0.226233	1.535516	-0.086798
5	6	0	0.824312	2.378282	-0.122889
6	6	0	0.702791	3.751576	0.221240
7	6	0	2.104493	1.851447	-0.548551
8	6	0	3.211060	2.730901	-0.641333
9	6	0	3.053941	4.111920	-0.277189
10	6	0	1.853951	4.603220	0.143953
11	7	0	2.186113	0.534329	-0.861511
12	6	0	3.344689	0.056743	-1.300572
13	6	0	4.499490	0.852974	-1.437101

5. Cartesian coordinates in the optimized structures

14	6	0	4.434271	2.188458	-1.097654
15	6	0	-2.477064	0.879104	0.168616
16	8	0	-2.079243	-0.280003	0.399987
17	7	0	-3.770557	1.109424	-0.138807
18	6	0	-4.660540	-0.074518	-0.189516
19	6	0	-4.579996	-0.818599	-1.525315
20	1	0	-0.705240	5.222694	0.952103
21	1	0	-2.620414	3.657136	0.960801
22	1	0	3.920897	4.763704	-0.343217
23	1	0	1.749683	5.648596	0.420298
24	1	0	5.419440	0.405731	-1.798211
25	1	0	5.307940	2.829794	-1.179224
26	1	0	-5.676764	0.284950	-0.001540
27	1	0	-4.377419	-0.734453	0.631170
28	1	0	-5.253950	-1.681711	-1.502626
29	1	0	-3.564793	-1.179381	-1.709507
30	1	0	-4.882005	-0.180256	-2.363732
31	7	0	0.010681	-3.883485	0.872012
32	8	0	-0.085481	-5.061541	1.129349
33	8	0	1.131664	-3.248836	0.938326
34	8	0	-1.002287	-3.166836	0.514680
35	7	0	1.130816	-0.169650	2.825018
36	8	0	-0.110028	-0.357190	2.546298

37	8	0	1 509208	0 188686	3 920046
57	0	Ū	1.509200	0.100000	5.520010
38	8	0	1.948492	-0.371241	1.847448
39	7	0	0.228089	-1.622440	-2.714469
40	8	0	-0.700470	-0.936836	-2.148223
41	8	0	0.266426	-1.805508	-3.912615
42	8	0	1.123741	-2.100882	-1.917717
43	6	0	-4.319552	2.352001	-0.701869
44	1	0	-4.861363	2.076006	-1.613966
45	1	0	-3.497497	2.994126	-1.021397
46	6	0	-5.260952	3.095599	0.250296
47	1	0	-4.753446	3.399795	1.172035
48	1	0	-5.651385	3.993488	-0.241039
49	1	0	-6.115179	2.473715	0.536115
50	1	0	3.356840	-0.998090	-1.560386
51	95	0	0.261413	-1.085459	0.171003

Table S3 Cartesian coordinates in the optimized structure of Eu(C2-PTA)(NO₃)₃

Standard orientation						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.035418	4.107204	0.590091	
2	6	0	-1.151501	3.396046	0.572214	
3	6	0	-1.126155	2.038713	0.189499	
4	7	0	0.018689	1.418947	-0.087988	
5	6	0	1.176807	2.104508	-0.114800	
6	6	0	1.243140	3.486691	0.208777	
7	6	0	2.376167	1.396297	-0.512283	
8	6	0	3.597008	2.109778	-0.592707	
9	6	0	3.630001	3.504084	-0.246391	
10	6	0	2.504212	4.166493	0.144344	
11	7	0	2.273273	0.078683	-0.812848	
12	6	0	3.360342	-0.563113	-1.222863	
13	6	0	4.619762	0.058870	-1.343587	
14	6	0	4.739111	1.394390	-1.019770	
15	6	0	-2.303145	1.085173	0.096056	
16	8	0	-2.067434	-0.122327	0.304421	
17	7	0	-3.549499	1.485623	-0.228393	
18	6	0	-4.579790	0.424525	-0.329054	
19	6	0	-4.554153	-0.294574	-1.680750	
20	1	0	0.041986	5.150603	0.893943	
21	1	0	-2.073531	3.872091	0.879149	
22	1	0	4.581319	4.026381	-0.302464	
23	1	0	2.543788	5.220231	0.405398	

 24	1	0	5.473273	-0.519047	-1.681846
25	1	0	5.696219	1.904462	-1.090962
26	1	0	-5.547601	0.905706	-0.158654
27	1	0	-4.405460	-0.283316	0.481948
28	1	0	-5.331238	-1.066201	-1.697788
29	1	0	-3.587214	-0.776578	-1.846667
30	1	0	-4.748922	0.395390	-2.510071
31	7	0	-0.575624	-3.870380	0.953803
32	8	0	-0.847224	-5.014395	1.239526
33	8	0	0.553147	-3.329888	1.261128
34	8	0	-1.397862	-3.101850	0.324195
35	7	0	0.938788	-0.367844	2.841987
36	8	0	-0.298497	-0.528039	2.537668
37	8	0	1.301247	-0.057478	3.957886
38	8	0	1.770097	-0.537499	1.872559
39	7	0	0.188541	-1.848198	-2.610178
40	8	0	-0.622262	-0.966169	-2.150714
41	8	0	0.276218	-2.100310	-3.794254
42	8	0	0.914243	-2.449168	-1.728279
43	63	0	0.091122	-1.213860	0.209394
44	6	0	-3.932807	2.804102	-0.754622
45	1	0	-4.507313	2.624008	-1.670543
46	1	0	-3.035531	3.343523	-1.060700
47	6	0	-4.769888	3.633984	0.223387
48	1	0	-4.223112	3.850046	1.147539
49	1	0	-5.050678	4.584888	-0.242366
50	1	0	-5.691340	3.112953	0.501664
51	1	0	3.224917	-1.611850	-1.472410