Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information

Manuscript ID: NJ-ART-09-2016-002767

Title: Iron Antimonate Quantum Dots Exhibiting Tunable Visible Light Emission

Authors: Pratanu Nag, Partha Pratim Das, Anurag Roy and Parukuttyamma Sujatha Devi*

Figure S1: Excitation wavelength depended room temperature PL spectra of as prepared FeSbO₄. Inset: Close observation at ~465nm of the same PL spectra.

Sample	Excitation Wavelength (nm)	Excitation Scan (nm)	Emission Scan (nm)	Stoke's shift (nm)	CIE coordinates (x,y)
FeSb ₃₀₀	310	333	376	43	(0.16,0.06)
FeSb ₃₀₀	315	343	389	46	(0.17,0.11)
FeSb ₃₀₀	320	348	395	47	(0.17,0.11)
FeSb ₃₀₀	325	356	408	52	(0.17,0.11)
FeSb ₃₀₀	330	367	419	52	(0.17,0.11)
FeSb ₃₀₀	335	369	422	53	(0.17,0.09)
FeSb ₃₀₀	340	373	427	54	(0.17,0.10)
FeSb ₃₀₀	345	377	434	57	(0.15,0.08)
FeSb ₄₅₀	310	335	384	49	(0.16,0.07)
FeSb ₄₅₀	315	345	399	54	(0.16,0.08)
FeSb ₄₅₀	320	350	409	59	(0.16,0.09)
FeSb ₄₅₀	325	360	417	57	(0.16,0.09)
FeSb ₄₅₀	330	369	424	55	(0.16,0.09)
FeSb ₄₅₀	335	371	428	57	(0.16,0.09)
FeSb ₄₅₀	340	373	431	58	(0.16,0.09)
FeSb ₄₅₀	345	389	439	60	(0.17,0.10)

Table ST1: Optical parameters recorded for both the water dispersions of $FeSb_{300}$ and $FeSb_{450}$ nanoparticles using photoluminescence spectroscopic analysis at room temperature.

Figure S2: Variation of FWHM of PL spectra for $FeSb_{300}$ and $FeSb_{450}$ at different excitation wavelength from 310 to 345 nm.

QDs	QY	Reference
CdSe	0.65-0.85	52-53
InP	0.01-0.40	54-55
CdTe/ CdHgTe	0.30-0.75	57-59
PbS	0.26-0.70	60-61
PbSe	0.10-0.80	62-63
ZnSe	0.81	64
FeSb ₃₀₀	8.5% (w.r.t. reference dye)	Current Work
$FeSb_{450}$	5.4% (w.r.t. reference dye)	Current Work

Table ST2. Photoluminescence QY comparison of few classical QDs with the synthesized FeSb₃₀₀ and FeSb₄₅₀ nanoparticles

Quantum Yield (QY) Calculation: We have measured the QY of the blue emission with respect to standard quinine sulphate (QY=0.54) in 0.1(M) H₂SO₄ using following formula,

 $(QY)_{sample} = (QY)_{standard} (I_{sample} / I_{standard}) (A_{standard} / A_{sample}) (\eta_{sample} / \eta_{standard}) [51]$

I, stands for the integrated peak area of the fluorescence curve, A is the absorbance at excitation wavelength of the concerned sample and η is refractive index of water.

Figure S3: (a), (b) and (c) EDAX spectrum of as prepared, $FeSb_{300}and FeSb_{450}nanoparticles along with their elemental compositional table. Fe: <math>\triangle$ Sb: \triangle O: \triangle