Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Spectroelectrochemical Properties of a Ru(II) Complex with a Thiazolo[5,4-*d*]Thiazole Triarylamine Ligand

Carol Hua,^a Felix J. Rizzuto,^a Xuan Zhang,^b Floriana Tuna,^c David Collison^c and Deanna M. D'Alessandro^{*a}

- (a) School of Chemistry, The University of Sydney, New South Wales 2006, Australia. Fax: +61 (2) 9351 3329; Tel: +61 (2) 9351 3777; E-mail: deanna.dalessandro@sydney.edu.au
- (b) School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 P.R. China
- (c) School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom

Figures

Figure S1. ¹H-¹H COSY spectrum for 2 obtained at 500 MHz.

Figure S2. Numbering for compounds 1 and 2.

Figure S3. Cyclic voltammograms of **1** in 0.1 M $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte over scan rates of 25-75 mV/s where the arrow indicates the direction of the forward scan.

Figure S4. Cyclic voltammograms of **2** cycled twice in the anodic and cathodic directions in 0.1 M [$(n-C_4H_9)_4N$]PF₆/CH₃CN electrolyte at a scan rate of 100 mV/s where the arrow indicates the direction of the forward scan in each case.

Figure S5. Solution state spectroelectrochemistry on **1** in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte over the potential range a) 0 to -1.1 V, b) 0.8 to 0.9 V, c) 0.95 to 1.0 V, d) 1.1 to 1.3 V, e) 1.3 to 1.7 V and f) overlay of all maximised processes.

Figure S6. Solution state spectroelectrochemistry on **2** in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte over the potential range of a) 0 to -0.9 V, b) -1.05 to -1.5 V and summary of the changes in the absorption spectrum as a function of potential applied.

Figure S7. Fluorescence ($\lambda_{ex} = 390 \text{ nm}$) and absorption spectra of a) the 1 and b) 2 ($\lambda_{ex} = 400 \text{ nm}$) as a solution in acetonitrile.

Figure S8. Fluorescence difference spectra of 1 ($\lambda_{ex} = 380 \text{ nm}$) during the *in situ* spectroelectrochemical experiment in [$(n-C_4H_9)_4N$]PF₆/CH₃CN electrolyte where the potential was increased from a) 0 to 1.5 V, and b) 1.5 to 1.7 V.

Figure S9. Fluorescence difference spectra of **2** ($\lambda_{ex} = 380 \text{ nm}$) during the *in situ* spectroelectrochemical experiment in [$(n-C_4H_9)_4N$]PF₆/CH₃CN electrolyte where the potential was a) increased from 0 to 1.0 V then b) decreased from 1.0 to -1.0 V.