Electronic Supplementary Information

An efficient nickel oxides/nickel structure for water oxidation: A new strategy

Mohammad Mahdi Najafpour^{*ab} and Navid Jameei Moghaddam^a

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran ^bCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran *Corresponding author; Phone: (+98) 24 3315 3201; E-mail: mmnajafpour@iasbs.ac.ir

Fig. S1 SEM image from pure Ni foam (Scale bar 200 μm).

Fig. S2 SEM image from pure Ni foam (Scale bar 50 μm).

Fig. S3 SEM image from pure Ni foam (Scale bar 20 μm).

9			
-			
4			
SEM HV: 15.0 kV SEM MAG: 15.0 kx	WD: 5.16 mm Det: InBeam SE	2 um	MIRA3 TESCAN
View field: 13.8 µm	Date(m/d/y): 04/24/16		RMRC

Fig. S4 SEM image from pure Ni foam (Scale bar 2 μ m).

SEM HV: 15.0 kV SEM MAG: 35.0 kx	WD: 4.01 mm Det: InBeam SE		MIRA3 TESCAN
View field: 5.93 µm	Date(m/d/y): 04/25/16	- Pin	RMRC

Fig. S5 SEM image from pure Ni foam (Scale bar 1 μ m).

Fig. S6 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 200 μm).

Fig. S7 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 50 μ m).

Fig. S8 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 20 μm).

Fig. S9 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 2 μ m).

Fig. S10 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 1 μm).

Fig. S11 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 500 nm).

Fig. S12 SEM image from Oxone treated Ni foam (Ni5) (Scale bar 200 nm).

Fig. S13 Visible spectra from Ni foam (black) and Oxone treated Ni foam (Ni300) (red) (a: reflection; b: absorption).

Table S1. Comparison of some catalytic parameters for heterogeneousWOCs.

Data from ref. [S1-S22] and Table was modified from ref. S23.

Compound [ղ ^[a] mV]	ባ ^[b] [mV]	рН	Ref.		
Treated Ni						
foam by						
Oxone	-	>400 ^[c]	13	This work		
NiFeO	-	297	14	[S1]		
NiOv	> 400	> 1000	14	[S2]		
NiO	-	300	14	[S1]		
CoÔ	-	381	14	IS1		
NiCoO	-	312	14	IS1		
FeOx	345	445	14	IS3		
FeOx	-	405	14	IS11		
Fe ₂ O ₃	< 350	430	14	[S4]		
MnOx	320	514	14	[S1]		
Fe ₃ Ni ₂ O _x	270	-	13	[S5]		
FeNiO _x	211	-	13	[S6]		
Fe ₂ Ni ₃ O _x	190	250	13	[S7]		
NiO _x	191	280	13	[S6]		
NiO _x	295	-	13	[S8]		
CoFeO _x ^[d]	397	-	13	[S9]		
CoO _x	< 200	< 250	13	[S10]		
FeO _x	320	410	13	[S6]		
CoO _x	210	270	13	[S6]		
CoO _x	295	-	13	[S5]		
FeCoO _x	181	-	13	[S6]		
FeCoNiO _x	191	-	13	[S6]		
Ni ₂ FeAlO _x	270	-	13	[S5]		
NiFeMo ₃ O _x	250	-	13	[S5]		
Ni ₂ FeCr ₂ O _x	240	-	13	[S5]		
NiFeGa₃O _x	240	-	13	[S5]		
CoSe ₂	373	380	13	[S11]		
NG-CoSe ₂	294	320	13	[S11]		
MnO _x	< 300	> 1000	>11.5	[S12]		
FeOOH	300	420	11	[\$13]		
NIB _i	300	425	9.2	[S14]		
IVINO _x	< 300	> 1000	8.5-5.5	[512]		
	< 200	< 300	7	[510]		
MnO _x	390	590	7	[515]		
	441	000	7	[510]		
	291	> 000	7	[317]		
	100	> 1000	7	[310]		
	> 700	410 > 1000	7	[319]		
	> 700 500	> 1000	7	[320]		
\Box_{X}	313	- 320	64	[321]		
	< 300	520 > 1000	0.4	[322]		
C_{α}^{2+} (1 M)	< 520	> 1000 600	5.5 1	[312]		
[a] Onset overnotential [b] for 1 mA/cm ² [c] for 10.0 mA/cm ² overnotential is						
626 mV.[d] Lavered double hydroxides (IDH)						
טבט ווזי.[ען במצרבע עטעטוב וואטוטאועבא (בטח).						

References

[S1] L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, J. Am. Chem. Soc., 2012, **134**, 17253.

[S2] L. Trotochaud, S. L. Young, J. K. Ranney and S. W. Boettcher, J. Am. Chem. Soc., 2014, **136**, 6744.

[S3] R. L. Doyle and M. E. G. Lyons, J. Electrochem. Soc., 2013, 160, H142.

[S4] Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang and Z. Fan, Nano Lett., 2014, **14**, 2123.

[S5] J. Y. C. Chen, J. T. Miller, J. B. Gerken and S. S., Energy Environ. Sci., 2014, 7, 1382.
[S6] R. D. L. Smith, M. S. Prevot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel and C. P. Berlinguette, Science, 2013, 340, 60.

[S7] R. D. L. Smith, M. S. Prevot, R. D. Fagan, S. Trudel and C. P. Berlinguette, J. Am. Chem. Soc., 2013, **135**, 11580.

[S8] L. G. Shaidarova, L. N. Daviershina and G. K. Budnikov, J. Anal. Chem., 2006, **61**, 502.
[S9] G. Abellan, J. A. Carrasco, E. Coronado, J. Romero and M. Varela, J. Mater. Chem. C, 2014, **2**, 3723.

[S10] J. B. Gerken, J. G. Alpin, J. Y. C. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt and S. S. Stahl, J. Am. Chem. Soc., 2011, **133**, 14431.

[S11] M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang and S. H. Yu, ACS Nano, 2014, **8**, 3970.

[S12] M. Huynh, D. K. Bediako and D. G. Nocera, J. Am. Chem. Soc., 2014, **136**, 6002.
[S13] W. D. Chemelewski, H. C. Lee, J. F Lin, A. J. Bard and C. B. Mullins, J. Am. Chem. Soc., 2014, **136**, 2843.

[S14] M. Dinca, Y. Surendranath and D. G. Nocera, Proc. Natl. Acad. Sci., USA, 2010, **107**, 10337.

[S15] I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer and H. Dau, Energy Environ. Sci., 2012, **5**, 7081.

[S16] A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau and M. Driess, Angew. Chem., Int. Ed., 2013, **52**, 13206; Angew. Chem., 2013, **125**, 13447.

[S17] S. Pintado, S. Goberna-Ferron, E. C. Escudero-Adan and J. R. Galan-Mascaros, J. Am. Chem. Soc., 2013, **135**, 13270.

[S18] A. Singh, R. K. Hocking, S. L.-Y. Chang, B. M. George, M. Fehr, K. Lips, A. Schnegg and L. Spiccia, Chem. Mater., 2013, **25**, 1098.

[S19] M. W. Kanan and D. G. Nocera, Science, 2008, **321**, 1072.

[S20] A. Bergmann, I. Zaharieva, H. Dau and P. Strasser, Energy Environ. Sci., 2013, 6, 2745.

[S21] J. Park, H. Kim, K. Jin, B. J. Lee, Y. S. Park, H. Kim, I. Park, K. D. Yang, H. Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang and K. T. Nam, J. Am. Chem. Soc., 2014, **136**, 4201.

[S22] H. S. Ahn and T. D. Tilley, Adv. Funct. Mater., 2013, 23, 227.

[S23] J. R. G. Mascaros, ChemElectroChem, 2015, 2, 37.